Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-926866

RESUMO

Microbial coinfections can increase the morbidity and mortality rates of viral respiratory diseases. Therefore, this study aimed to determine the pooled prevalence of fungal coinfections in coronavirus disease 2019 (COVID-19) patients. Web of Science, Medline, Scopus, and Embase were searched without language restrictions to identify the related research on COVID-19 patients with fungal coinfections from December 1, 2019, to December 30, 2020. A random-effects model was used for analysis. The sample size included 2,246 patients from 8 studies. The pooled prevalence of fungal coinfections was 12.60%. The frequency of fungal subtype coinfections was 3.71% for Aspergillus, 2.39% for Candida, and 0.39% for other. The World Health Organization’s Regional Office for Europe and Regional Office for Southeast Asia had the highest (23.28%) and lowest (4.53%) estimated prevalence of fungal coinfection, respectively. Our findings showed a high prevalence of fungal coinfections in COVID-19 cases, which is a likely contributor to mortality in COVID-19 patients. Early identification of fungal pathogens in the laboratory for COVID-19 patients can lead to timely treatment and prevention of further damage by this hidden infection.

2.
Viral Immunol ; 34(8): 552-558, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34463142

RESUMO

Infectious laryngotracheitis virus (ILTV) is a cause of main respiratory disease of chickens controlled through live attenuated vaccines. To reduce the risk of adverse effects associated with live vaccines, a recombinant vaccine expressing PH-1 domain of viral glycoprotein B was constructed using the pET expression system under isopropylthiogalactoside (IPTG) induction. The potential immunogenicity of recombinant PH-1 (rPH-1) was evaluated in chickens. Eight-week-old specific-pathogen-free chickens were intramuscularly administered two doses of rPH-1, 25 and 50 µg, alone or with a combination of ISA70 adjuvant. The humoral immune responses were determined up to 3 months postvaccination at 2 weeks apart. The T cell proliferation response was determined on day 28 after primary immunization. The vaccinated birds with rPH-1/ISA70 developed higher and constant-specific anti-ILTV enzyme-linked immunosorbent assay (ELISA) antibodies than in those vaccinated with rPH-1 alone. Coinjection of rPH-1 and adjuvant significantly (p < 0.01) increased the T cell proliferation responses. There were no significant differences in eliciting the immune responses in chickens immunized with the higher dose of the antigen than that with the lower dose. The data indicate the immunogenic efficiency of rPH-1 against ILTV. Vaccination with recombinant proteins offers a preventing option to control the ILTV infection and could be a candidate to replace current live vaccines.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Proteínas do Envelope Viral , Vacinas Virais , Animais , Anticorpos Antivirais , Galinhas , Infecções por Herpesviridae/imunologia , Herpesvirus Galináceo 1/imunologia , Imunidade , Vacinas Atenuadas , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...