Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27092026

RESUMO

This paper presents a passive shimming design approach for a magic-angle-spinning (MAS) NMR magnet. In order to achieve a 1.5-T magic-angle field in NMR samples, we created two independent orthogonal magnetic vector fields by two separate coils: the dipole and solenoid. These two coils create a combined 1.5-T magnetic field vector directed at the magic angle (54.74° from the spinning axis). Additionally, the stringent magnetic field homogeneity requirement of the MAS magnet is the same as that of a solenoidal NMR magnet. The challenge for the magic-angle passive shimming design is to correct both the dipole and solenoid magnetic field spherical harmonics with one set of iron pieces, the so-called ferromagnetic shimming. Furthermore, the magnetization of the iron pieces is produced by both the dipole and solenoid coils. In our design approach, a matrix of 2 mm by 5 mm iron pieces with different thicknesses was attached to a thin-walled tube, 90-mm diameter and 40-mm high. Two sets of spherical harmonic coefficients were calculated for both the dipole and solenoid coil windings. By using the multiple-objective linear programming optimization technique and coordinate transformations, we have designed a passive shimming set that can theoretically reduce 22 lower-order spherical harmonics and improve the homogeneity of our MAS NMR magnet.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31388292

RESUMO

This paper presents a high-resolution magnetic field mapping system in development that is capable of collecting spatial magnetic field data for NMR magnets. An NMR probe was designed and built with a resonant frequency of 5.73 MHz. The measured Q-factor of the NMR probe is ~191 with a half-power bandwidth in the range of 5.72-5.75 MHz. An RF continuous-wave technique with magnetic field modulation was utilized to detect the power dispersion of water molecules. The zero-crossing frequency of the NMR dispersion signal corresponds to the magnetic field at the center of the water sample. An embedded system was developed to sweep the frequency and record the reflected RF power simultaneously. A numerically controlled digital oscillator is able to provide a precise frequency step as small as 0.02 Hz, which is equivalent to 4.7 e-7 mT for hydrogen atoms. An RF preamplifier was built to supply up to 4 W of RF power to a bidirectional coupler. The coupler supplies RF power to the NMR probe and channels reflect the RF power back to the detection circuit, which detects the reflected RF power from the NMR probe during the frequency sweep. The homogeneity of an NMR magnet can be determined by magnetic field data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...