Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 690: 445-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37858538

RESUMO

Extracellular signal-regulated kinase (ERK) is the culmination of a mitogen-activated protein kinase cascade that regulates cellular processes like proliferation, migration, and survival. Consequently, abnormal ERK signaling often plays a role in the tumorigenesis and metastasis of numerous cancers. ERK inhibition is a sought-after treatment for cancers, especially since clinically approved drugs that target signaling upstream of ERK often induce acquired resistance. Furthermore, the ERK2 isoform may have a differential role in various cancers from the other canonical isoform, ERK1. We demonstrate that small molecules can inhibit ERK2 catalytic and noncatalytic functions by binding to the D-recruitment site (DRS), a protein-protein interaction site distal to the enzyme active site. Using a fluorescence anisotropy-based high-throughput screening, we identify compounds that bind to the DRS and exhibit dose-dependent inhibition of ERK2 activity and ERK2 phosphorylation. We characterize the dose-dependent potency of ERK2 inhibitors using fluorescence anisotropy-based binding assays, fluorescence-based ERK2 substrate phosphorylation assays, and in vitro ERK2 activation assays. In our example, the binding of a DRS inhibitor can be prevented by mutating the DRS residue Cys-159 to serine, indicating that this residue is essential for the interaction. Resulting inhibitors from this process can be assessed in cellular and in vivo experiments for inhibition of ERK signaling and can be evaluated as potential cancer drugs.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Transdução de Sinais , Fosforilação , Transdução de Sinais/fisiologia , Processamento de Proteína Pós-Traducional , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA