Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244819

RESUMO

Disease outbreaks in crustacean aquaculture caused by opportunistic and obligate pathogens cause severe economic losses to the industry. Antibiotics are frequently used as prophylactic treatments worldwide, although its overuse and misuse has led to microbial resistance, which has driven the search for novel molecules with immunostimulant and antibacterial activities. Antimicrobial peptides (AMP) and double-stranded (ds)RNAs constitute promising immunostimulants in the fight against infectious diseases in aquaculture. Scientists have made significant progress in testing these molecules in aquatic organisms as potential candidates for replacing conventional antibiotics. However, most studies have been conducted in teleost fish, thus little is known about the immunostimulatory effects in crustaceans, especially in freshwater crayfishes. Consequently, in the present work, we evaluate the immunomodulatory effects of the AMP Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and high molecular weight (HMW) Poly (I:C) in the northern clearwater crayfish Orconectes propinquus. Two bioassays were conducted to evaluate the effects of different doses of PACAP and Poly (I:C) HMW, different administration routes, as well as the effects of the combined treatment on the crayfish immune system. Results showed the immunostimulatory role of PACAP and Poly (I:C) HMW with effects depending on the dose, the site of injection and the treatment assessed. These findings offer new insights into the crayfish immune system and contribute to the development of effective broad-spectrum immune therapies in aquaculture.


Assuntos
Adjuvantes Imunológicos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Adjuvantes Imunológicos/farmacologia , Antibacterianos , RNA , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase
2.
Fish Shellfish Immunol ; 121: 215-222, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999226

RESUMO

Salmonids are one of the most farmed fish species worldwide. These aquatic vertebrates rely heavily on their innate immune responses as the first line of defense to defend themselves against invading pathogens. Although commercial vaccines are available against some viral and bacterial pathogens affecting salmonids, their protective efficacy varies. Using a prophylactic inducer of local and systemic innate immune responses to limit infection could have significant implications in salmonid aquaculture. A potent inducer of innate immune responses in fish is double-stranded RNA (dsRNA), a molecule that all viruses make during their replicative cycle. Polyinosinic: polycytidylic acid (polyI:C) is a synthetic dsRNA commonly used to induce type I interferons (IFNs), interferon stimulated genes (ISGs) as well as an antiviral state in vertebrate species. Based on in vitro data it was hypothesized that both local and systemic innate immune responses, in salmonids, would be enhanced by orally delivering high molecular weight polyI:C (HMW polyI:C) using cationic phytoglycogen nanoparticles (NPs) as a delivery method. The present study investigates this hypothesis using two feed delivery methods. In the first in vivo study, to ensure an equal distribution of dose, individual rainbow trout (Oncorhynchus mykiss) were orally gavaged with feed moistened with a solution containing HMW-NP (polyI:C complexed with cationic phytoglycogen nanoparticles) or HMW polyI:C alone. In a second in vivo experiment, to better mimic a more realistic feeding scenario, rainbow trout were fed feed pellets to which HMW, or HMW-NP was added. The expression of IFN1 and ISGs (vig-3, Mx1) were quantified using real-time PCR in the intestine (local response) and head kidney (systemic response). The results of these studies indicate that HMW-NP induced a higher level of IFN1 and ISG expression in the intestine and head kidney compared to the HMW fed fish. The results of this study could lead to new advances in therapeutics for the aquaculture industry by utilizing the innate immune response against invading pathogens using an orally delivered stimulant.


Assuntos
Imunidade Inata , Interferon Tipo I , Nanopartículas , Oncorhynchus mykiss , RNA de Cadeia Dupla/imunologia , Animais , Doenças dos Peixes/prevenção & controle , Interferon Tipo I/imunologia , Oncorhynchus mykiss/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...