Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794084

RESUMO

Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Polarização de Fluorescência , Aflatoxina B1/análise , Aflatoxina B1/química , Aptâmeros de Nucleotídeos/química , Polarização de Fluorescência/métodos , Polieletrólitos/química , Técnicas Biossensoriais/métodos , Poliaminas/química , Limite de Detecção , Corantes Fluorescentes/química
2.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067619

RESUMO

In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aflatoxina B1 , DNA Complementar/genética , Transferência Ressonante de Energia de Fluorescência , Ligantes , Aptâmeros de Nucleotídeos/genética , Limite de Detecção
3.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38131794

RESUMO

CRISPR/Cas12a is a potent biosensing tool known for its high specificity in DNA analysis. Cas12a recognizes the target DNA and acquires nuclease activity toward single-stranded DNA (ssDNA) probes. We present a straightforward and versatile approach to transforming common Cas12a-cleavable DNA probes into enhancing tools for fluorescence anisotropy (FA) measurements. Our study involved investigating 13 ssDNA probes with linear and hairpin structures, each featuring fluorescein at one end and a rotation-slowing tool (anchor) at the other. All anchors induced FA changes compared to fluorescein, ranging from 24 to 110 mr. Significant FA increases (up to 180 mr) were obtained by adding divalent metal salts (Mg2+, Ca2+, Ba2+), which influenced the rigidity and compactness of the DNA probes. The specific Cas12a-based recognition of double-stranded DNA (dsDNA) fragments of the bacterial phytopathogen Erwinia amylovora allowed us to determine the optimal set (probe structure, anchor, concentration of divalent ion) for FA-based detection. The best sensitivity was obtained using a hairpin structure with dC10 in the loop and streptavidin located near the fluorescein at the stem in the presence of 100 mM Mg2+. The detection limit of the dsDNA target was equal to 0.8 pM, which was eight times more sensitive compared to the common fluorescence-based method. The enhancing set ensured detection of single cells of E. amylovora per reaction in an analysis based on CRISPR/Cas12a with recombinase polymerase amplification. Our approach is universal and easy to implement. Combining FA with Cas12a offers enhanced sensitivity and signal reliability and could be applied to different DNA and RNA analytes.


Assuntos
Técnicas Biossensoriais , Sais , Sistemas CRISPR-Cas , Reprodutibilidade dos Testes , DNA , DNA de Cadeia Simples , Fluoresceína
4.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563267

RESUMO

Short oligonucleotides are widely used for the construction of aptamer-based sensors and logical bioelements to modulate aptamer-ligand binding. However, relationships between the parameters (length, location of the complementary region) of oligonucleotides and their influence on aptamer-ligand interactions remain unclear. Here, we addressed this task by comparing the effects of short complementary oligonucleotides (ssDNAs) on the structure and ligand-binding ability of an aptamer and identifying ssDNAs' features that determine these effects. Within this, the interactions between the OTA-specific G-quadruplex aptamer 1.12.2 (5'-GATCGGGTGTGGGTGGCGTAAAGGGA GCATCGGACA-3') and 21 single-stranded DNA (ssDNA) oligonucleotides complementary to different regions of the aptamer were studied. Two sets of aptamer-ssDNA dissociation constants were obtained in the absence and in the presence of OTA by isothermal calorimetry and fluorescence anisotropy, respectively. In both sets, the binding constants depend on the number of hydrogen bonds formed in the aptamer-ssDNA complex. The ssDNAs' having more than 23 hydrogen bonds with the aptamer have a lower aptamer dissociation constant than for aptamer-OTA interactions. The ssDNAs' having less than 18 hydrogen bonds did not affect the aptamer-OTA affinity. The location of ssDNA's complementary site in the aptamer affeced the kinetics of the interaction and retention of OTA-binding in aptamer-ssDNA complexes. The location of the ssDNA site in the aptamer G-quadruplex led to its unfolding. In the presence of OTA, the unfolding process was longer and takes from 20 to 70 min. The refolding in the presence of OTA was possible and depends on the length and location of the ssDNA's complementary site. The location of the ssDNA site in the tail region led to its rapid displacement and wasn't affecting the G-qaudruplex's integrity. It makes the tail region more perspective for the development of ssDNA-based tools using this aptamer.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Quadruplex G , Ocratoxinas , Anticorpos , Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples , Polarização de Fluorescência , Ligantes
5.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182550

RESUMO

Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.


Assuntos
Aptâmeros de Nucleotídeos , Antibacterianos/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Simulação por Computador , Evolução Molecular Direcionada , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Organofosfatos/antagonistas & inibidores , Organofosfatos/química , Proteínas/antagonistas & inibidores , Proteínas/química , Técnica de Seleção de Aptâmeros
6.
Anal Chim Acta ; 1102: 109-118, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32043989

RESUMO

The combination of isothermal nucleic acid amplification and lateral flow assay (LFA) provides highly sensitive non-laboratory ("point-of-care") detection. The aim of this study is to investigate the recognition on lateral flow membranes of DNA targets with different lengths as products of recombinase polymerase amplification (RPA). We produced double-stranded DNA with lengths of 50, 100, 150, 200, and 300 bp. Each DNA target was functionalized with biotin and fluorescein (FAM). Kinetic and equilibrium constants of the interaction of FAM at the 5'-end of DNA with anti-FAM antibodies did not depend on DNA length. Gold nanoparticles (GNPs) with diameters of 17.4 ± 1.0 nm were conjugated with anti-FAM antibodies and streptavidin. LFA was performed in two schemes: 1) anti-FAM antibodies immobilized in the test zone, GNP-streptavidin conjugates recognized as DNA; 2) streptavidin immobilized in the test zone, GNP‒anti-FAM antibodies conjugates recognized as DNA. Considering that the components of the RPA mixture caused the aggregation of the GNP-streptavidin conjugate in contradistinction to conjugate with anti-FAM antibodies, we found that 150 bp was the most promising length for the DNA target. For this length, a detection limit was achieved up to 70 pM that was approximately 10 times lower than for 50-bp DNA in the same scheme. Moreover, we showed that high concentrations of primers containing FAM or biotin competed with the DNA target on lateral flow membranes. These results demonstrated that a DNA length should be considered when designing RPA-LFA systems to detect DNA targets with high sensitivity.


Assuntos
DNA/análise , Anticorpos Imobilizados/imunologia , Biotina/química , DNA/química , Fluoresceínas/química , Corantes Fluorescentes/química , Ouro/química , Imunoensaio/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Estreptavidina/química
7.
Biochem Biophys Res Commun ; 505(2): 536-541, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30269817

RESUMO

The fluorescent properties of ligands can change when they bind to specific receptors. Modulated by the transition of the ligand from the free to the bound state, fluorescence makes it possible both to detect this ligand and quantitatively register its binding. We characterized the interaction of ochratoxin A (OTA) with the specific G-quadruplex aptamer through excitation-emission matrix fluorescence spectroscopy. It was shown that the formation of the complex changes the OTA fluorescence spectrum both in the region of the main peak at λex/λem 380/430 nm and in the region of peak at λex/λem 265/425 nm. At pH 8.5 and OTA concentration of 30 nM, this peak is smaller in intensity than the main peak of fluorescence. The formation of the complex with the aptamer leads to an increase of the fluorescence at λex/λem 265/425 nm up to 6.5 times, which makes it up to 4.9 times more intense than fluorescence at 380/430 nm. Fluorescence of the G-quadruplex aptamer (donor) takes part in increasing of the OTA (acceptor) emission at λex/λem 265/425 nm due to the resonance energy transfer. The concentration regularities of the modulated fluorescence of OTA at λex/λem 265/425 nm have been studied. Their correspondence to the calculations of complexation conducted on the basis of the dissociation constant is shown.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Ocratoxinas/metabolismo , Aptâmeros de Nucleotídeos/química , Fluorescência , Quadruplex G , Ligantes , Ocratoxinas/análise , Ocratoxinas/química , Espectrometria de Fluorescência
8.
Anal Chem ; 90(15): 9189-9198, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29961317

RESUMO

Registration of fluorescence anisotropy (FA) allows for characterizing the interactions of ligands with aptamers and other receptors under homogeneous conditions without reagent immobilization, prolonged incubations, and product separation. We proposed an approach for aptamer affinity determination by FA taking into account the difference in label fluorescence before and after complexation. The detailed step by step scheme using a native and fluorescently labeled ligand was described and justified in the paper. The scheme ensures the exclusion of data with low reliability and establishes valid criteria for selecting optimal concentrations of reagents (labeled ligand and aptamer) used in the experiments. The approach was experimentally tested using ochratoxin A (OTA), its fluorescein-labeled derivative (OTA-Flu), and the aptamer binding them. We demonstrated that it allows minimizing the influence of fluorescence change to accurately determine the dissociation constant. On the basis of FA registration, the binding constants of the aptamer-OTA-Flu and the aptamer-OTA complexes were found to be equal to 245 + 33 and 63 + 18 nM, respectively. The value for the aptamer-OTA complexes was confirmed by the equilibrium dialysis technique. The resulting constant was 80 ± 9 nM. The versatility and methodological simplicity of the proposed protocol, as well as the short implementation time, are why it can be recommended as an effective tool for characterizing aptamer-ligand complexes.

9.
Anal Chim Acta ; 962: 80-87, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28231883

RESUMO

A new strategy for sensitive fluorescence polarisation (FP) analysis is proposed which uses aptamer as the receptor and anchor protein modules as the enhancers by including the aptamers in complexes with protein modules. This approach is based on increasing the size differences of bound and unbound fluorophores. The strategy was applied in an ochratoxin A (ОТА) assay with the competitive binding of fluorophore-labelled and free OTA with aptamer-based receptors. We showed that the binding of labelled OTA with aptamer included in complexes with anchors led to higher a FP than binding with free aptamer. This allowed the aptamer concentration to be reduced, thus lowering the limit of detection by a factor of 40, down to 3.6 nM. The assay time was 15 min. To evaluate the applicability of the FP assay with aptamer-anchor complex to real samples, we conducted OTA measurements in spiked white wine. The OTA limit of detection in wine was 2.8 nM (1.1 µg/kg), and the recoveries ranged from 83% to 113%. The study shows that the proposed anchor strategy is efficient for increasing the sensitivity of FP-based aptamer assays.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Polarização de Fluorescência/métodos , Imunoglobulina G/metabolismo , Ocratoxinas/análise , Estreptavidina/metabolismo , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...