RESUMO
Liolaemus is the most specious genus of the Squamata lizards in South America, presenting exceptional evolutionary radiation and speciation patterns. This recent diversification complicates the formal taxonomic treatment and the phylogenetic analyses of this group, causing relationships among species to remain controversial. Here we used Next-Generation Sequencing to do a comparative analysis of the structure and organization of the complete mitochondrial genomes of three differently related species of Liolaemus and with different reproductive strategies and ploidy levels. The annotated mitochondrial genomes of ca. 17 kb are the first for the Liolaemidae family. Despite the high levels of sequence similarity among the three mitochondrial genomes over most of their lengths, the comparative analyses revealed variations at the stop codons of the protein coding genes and the structure of the tRNAs among species. The presence of a non-canonical dihydrouridine loop is a novelty for the pleurodonts iguanians. But the highest level of variability was observed in two repetitive sequences of the control region, which were responsible for most of the length heterogeneity of the mitochondrial genomes. These tandem repeats may be useful markers to analyze relationships of closely related species of Liolaemus and related genera and to conduct population and phylogenetic studies.
RESUMO
Satellite DNA (satDNA) is a major component of the heterochromatic regions of eukaryote genomes and usually shows a high evolutionary dynamic, even among closely related species. Section Arachis (genus Arachis) is composed of species belonging to six different genomes (A, B, D, F, G and K). The most distinguishing features among these genomes are the amount and distribution of the heterochromatin in the karyotypes. With the objective of gaining insight into the sequence composition and evolutionary dynamics of the heterochromatin fraction in Arachis, we investigated here the sequence diversity, genomic abundance, and chromosomal distribution of a satDNA family (ATR-2) among seven diploid species of section Arachis. All of the isolated sequences were AT-rich and highly conserved at both intraspecific and interspecific levels, without any species-specific polymorphism. Pairwise comparisons of isolated ATR-2 monomers revealed that most of the nucleotide sites were in the first two transitional stages of Strachan's model. However, the abundance of ATR-2 was significantly different among genomes according to the 'library hypothesis'. Fluorescent in situ hybridization revealed that ATR-2 is a main component of the DAPI+ centromeric heterochromatin of the A, F, and K genomes. Thus, the evolution of the different heterochromatin patterns observed in Arachis genomes can be explained, at least in part, by the differential representation of ATR-2 among the different species or even among the chromosomes of the same complement. These findings are the first to demonstrate the participation of satDNA sequences in the karyotype diversification of wild diploid Arachis species.
Assuntos
Arachis/genética , DNA Satélite/genética , Cariótipo , Algoritmos , Diferenciação Celular , Clonagem Molecular , Biologia Computacional , DNA de Plantas/genética , Diploide , Evolução Molecular , Variação Genética , Genoma de Planta , Heterocromatina/metabolismo , Hibridização in Situ Fluorescente , Filogenia , Especificidade da EspécieRESUMO
Notolathyrus is a section of South American endemic species of the genus Lathyrus. The origin, phylogenetic relationship and delimitation of some species are still controversial. The present study provides an exhaustive analysis of the karyotypes of approximately half (10) of the species recognized for section Notolathyrus and four outgroups (sections Lathyrus and Orobus) by cytogenetic mapping of heterochromatic bands and 45S and 5S rDNA loci. The bulk of the parameters analyzed here generated markers to identify most of the chromosomes in the complements of the analyzed species. Chromosome banding showed interspecific variation in the amount and distribution of heterochromatin, and together with the distribution of rDNA loci, allowed the characterization of all the species studied here. Additionally, some of the chromosome parameters described (st chromosomes and the 45S rDNA loci) constitute the first diagnostic characters for the Notolathyrus section. Evolutionary, chromosome data revealed that the South American species are a homogeneous group supporting the monophyly of the section. Variation in the amount of heterochromatin was not directly related to the variation in DNA content of the Notolathyrus species. However, the correlation observed between the amount of heterochromatin and some geographical and bioclimatic variables suggest that the variation in the heterochromatic fraction should have an adaptive value.