Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10524-10536, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38507247

RESUMO

The reaction steps for the selective conversion of a transition metal carbonyl complex to a hydroxymethyl complex that releases methanol upon irradiation with visible light have been successfully quantified in acetonitrile solution with dihydrobenzimidazole organic hydride reductants. Dihydrobenzimidazole reductants have been shown to be inactive toward H2 generation in the presence of a wide range of proton sources and have been regenerated electrochemically or photochemically. Specifically, the reaction of cis-[Ru(bpy)2(CO)2]2+ (bpy = 2,2'-bipyridine) with one equivalent of a dihydrobenzimidazole quantitatively yields a formyl complex, cis-[Ru(bpy)2(CO)(CHO)]+, and the corresponding benzimidazolium on a seconds time scale. Kinetic experiments revealed a first-order dependence on the benzimidazole hydride concentration and an unusually large kinetic isotope effect, inconsistent with direct hydride transfer and more likely to occur by an electron transfer-proton-coupled electron transfer (EΤ-PCET) or related mechanism. Further reduction/protonation of cis-[Ru(bpy)2(CO)(CHO)]+ with two equivalents of the organic hydride yields the hydroxymethyl complex cis-[Ru(bpy)2(CO)(CH2OH)]+. Visible light excitation of cis-[Ru(bpy)2(CO)(CH2OH)]+ in the presence of excess organic hydride was shown to yield free methanol. Identification and quantification of methanol as the sole CO reduction product was confirmed by 1H NMR spectroscopy and gas chromatography. The high selectivity and mild reaction conditions suggest a viable approach for methanol production from CO, and from CO2 through cascade catalysis, with renewable organic hydrides that bear similarities to Nature's NADPH/NADP+.

2.
ACS Appl Mater Interfaces ; 15(28): 34249-34262, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417666

RESUMO

Molecular dyes, called sensitizers, with a cis-[Ru(LL)(dcb)(NCS)2] structure, where dcb is 4,4'-(CO2H)2-2,2'-bipyridine and LL is dcb or a different diimine ligand, are among the most optimal for application in dye-sensitized solar cells (DSSCs). Herein, a series of five sensitizers, three bearing two dcb ligands and two bearing one dcb ligand, were anchored to mesoporous thin films of conducting tin-doped indium oxide (ITO) or semiconducting TiO2 nanocrystallites. The number of dcb ligands impacts the surface orientation of the sensitizer; density functional theory (DFT) calculations revealed an ∼1.6 Å smaller distance between the oxide surface and the Ru metal center for sensitizers with two dcb ligands. Interfacial electron transfer kinetics from the oxide material to the oxidized sensitizer were measured as a function of the thermodynamic driving force. Analysis of the kinetic data with Marcus-Gerischer theory indicated that the electron coupling matrix element, Hab, was sensitive to distance and ranged from Hab = 0.23 to 0.70 cm-1, indicative of nonadiabatic electron transfer. The reorganization energies, λ, were also sensitive to the sensitizer location within the electric double layer and were smaller, with one exception, for sensitizers bearing two dcb ligands λ = 0.40-0.55 eV relative to those with one λ = 0.63-0.66 eV, in agreement with dielectric continuum theory. Electron transfer from the oxide to the photoexcited sensitizer was observed when the diimine ligand was more easily reduced than the dcb ligand. Lateral self-exchange "hole hopping" electron transfer between surface-anchored sensitizers was found to be absent for sensitizers with two dcb ligands, while those with only one were found to hop with rates similar to those previously reported in the literature, khh = 47-89 µs-1. Collectively, the kinetic data and analysis reveal that interfacial kinetics are highly sensitive to the surface orientation and sensitizers bearing two dcb ligands are most optimal for practical applications of DSSCs.

3.
J Am Chem Soc ; 145(20): 11282-11292, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161731

RESUMO

Photovoltages for hydrogen-terminated p-Si(111) in an acetonitrile electrolyte were quantified with methyl viologen [1,1'-(CH3)2-4,4'-bipyridinium](PF6)2, abbreviated MV2+, and [Ru(bpy)3](PF6)2, where bpy is 2,2'-bipyridine, that respectively undergo two and three one-electron transfer reductions. The reduction potentials, E°, of the two MV2+ reductions occurred at energies within the forbidden bandgap, while the three [Ru(bpy)3]2+ reductions occurred within the continuum of conduction band states. Bandgap illumination resulted in reduction that was more positive than that measured with a degenerately doped n+-Si demonstrative of a photovoltage, Vph, that increased in the order MV2+/+ (260 mV) < MV+/0 (400 mV) < Ru2+/+ (530 mV) ∼ Ru+/0 (540 mV) ∼ Ru0/- (550 mV). Pulsed 532 nm excitation generated electron-hole pairs whose dynamics were nearly constant under depletion conditions and increased markedly as the potential was raised or lowered. A long wavelength absorption feature assigned to conduction band electrons provided additional evidence for the presence of an inversion layer. Collectively, the data reveal that the most optimal photovoltage, as well as the longest electron-hole pair lifetime and the highest surface electron concentration, occurs when E° lies energetically within the unfilled conduction band states where an inversion layer is present. The bell-shaped dependence for electron-hole pair recombination with the surface potential was predicted by the time-honored SRH model, providing a clear indication that this interface provides access to all four bias conditions, i.e., accumulation, flat band, depletion, and inversion. The implications of these findings for photocatalysis applications and solar energy conversion are discussed.

4.
Chem Catal ; 3(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36936750

RESUMO

Aryl diazonium salts are ubiquitous building blocks in chemistry, as they are useful radical precursors in organic synthesis as well as for the functionalization of solid materials. They can be reduced electrochemically or through a photo-induced electron transfer reaction. Here we provide a detailed picture of the ground and excited-state reactivity of a series of 9 rare and earth abundant photosensitizers with 13 aryl diazonium salts, which also included 3 macrocyclic calix[4]arene tetradiazonium salts. Nanosecond transient absorption spectroscopy confirmed the occurrence of excited-state electron transfer and was used to quantify cage-escape yields, i.e. the efficiency with which the formed radicals separate and escape the solvent cage. Cage-escape yields were large; increased when the driving force for photo-induced electron transfer increased and also tracked with the C-N2 + bond cleavage propensity, amongst others. A photo-induced borylation reaction was then investigated with all the photosensitizers and proceeded with yields between 9 and 74%.

5.
Inorg Chem ; 62(5): 2359-2375, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693077

RESUMO

Eleven 2,2'-bipyridine (bpy) ligands functionalized with attachment groups for covalent immobilization on silicon surfaces were prepared. Five of the ligands feature silatrane functional groups for attachment to metal oxide coatings on the silicon surfaces, while six contain either alkene or alkyne functional groups for attachment to hydrogen-terminated silicon surfaces. The bpy ligands were coordinated to Re(CO)5Cl to form complexes of the type Re(bpy)(CO)3Cl, which are related to known catalysts for CO2 reduction. Six of the new complexes were characterized using X-ray crystallography. As proof of principle, four molecular Re complexes were immobilized on either a thin layer of TiO2 on silicon or hydrogen-terminated silicon. The surface-immobilized complexes were characterized using X-ray photoelectron spectroscopy, IR spectroscopy, and cyclic voltammetry (CV) in the dark and for one representative example in the light. The CO stretching frequencies of the attached complexes were similar to those of the pure molecular complexes, but the CVs were less analogous. For two of the complexes, comparison of the electrocatalytic CO2 reduction performance showed lower CO Faradaic efficiencies for the immobilized complexes than the same complex in solution under similar conditions. In particular, a complex containing a silatrane linked to bpy with an amide linker showed poor catalytic performance and control experiments suggest that amide linkers in conjugation with a redox-active ligand are not stable under highly reducing conditions and alkyl linkers are more stable. A conclusion of this work is that understanding the behavior of molecular Re catalysts attached to semiconducting silicon is more complicated than related complexes, which have previously been immobilized on metallic electrodes.

6.
Photochem Photobiol Sci ; 21(8): 1433-1444, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35595935

RESUMO

A series of nine [Ir(piq)2(LL)]+.PF6- photosensitizers, where piqH = 1-phenylisoquinoline, was developed and investigated for excited-state electron transfer with sacrificial electron donors that included triethanolamine (TEOA), triethylamine (TEA) and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) in acetonitrile. The photosensitizers were obtained in 57-82% yield starting from the common [Ir(piq)2µ-Cl]2 precursor and were all characterized by UV-Vis absorption as well as by steady-state, time-resolved spectroscopies and electrochemistry. The excited-state lifetimes ranged from 250 to 3350 ns and excited-state electron transfer quenching rate constants in the 109 M-1 s-1 range were obtained when BIH was used as electron donor. These quenching rate constants were three orders of magnitude higher than when TEA or TEOA was used. Steady-state photolysis in the presence of BIH showed that the stable and reversible accumulation of mono-reduced photosensitizers was possible, highlighting the potential use of these Ir-based photosensitizers in photocatalytic reactions relevant for solar fuels production.


Assuntos
Fármacos Fotossensibilizantes , Fotólise , Fármacos Fotossensibilizantes/química
7.
J Am Chem Soc ; 143(38): 15661-15673, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529421

RESUMO

Efficient excited-state electron transfer between an iron(III) photosensitizer and organic electron donors was realized with green light irradiation. This advance was enabled by the use of the previously reported iron photosensitizer, [Fe(phtmeimb)2]+ (phtmeimb = {phenyl[tris(3-methyl-imidazolin-2-ylidene)]borate}, that exhibited long-lived and luminescent ligand-to-metal charge-transfer (LMCT) excited states. A benchmark dehalogenation reaction was investigated with yields that exceed 90% and an enhanced stability relative to the prototypical photosensitizer [Ru(bpy)3]2+. The initial catalytic step is electron transfer from an amine to the photoexcited iron sensitizer, which is shown to occur with a large cage-escape yield. For LMCT excited states, this reductive electron transfer is vectorial and may be a general advantage of Fe(III) photosensitizers. In-depth time-resolved spectroscopic methods, including transient absorption characterization from the ultraviolet to the infrared regions, provided a quantitative description of the catalytic mechanism with associated rate constants and yields.

8.
Inorg Chem ; 60(22): 16953-16965, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34314158

RESUMO

The mechanistic identification of Nature's use of concerted reactions, in which all bond breaking and bond making occurs in a single step, has inspired rational designs for artificial synthetic transformations via pathways that bypass high-energy intermediates that would otherwise be thermodynamically and kinetically inaccessible. In this contribution we electrochemically activate an organometallic Ruthenium(II) complex to show that, in acetonitrile solutions, the movement of protons from weak Brønsted acids, such as water and methanol, is coupled with the transfer of its negatively charged counterpart to carbon dioxide (CO2)─a process termed proton-coupled group transfer─to stoichiometrically produce a metal-hydride complex and a carbonate species. These previously unidentified pathways have played key roles in CO2 and proton reduction catalysis by enabling the generation of key intermediates such as hydrides and metallocarboxylic acids, while their applicability to carbon acids may provide alternative approaches in the electrosynthesis of chemical commodities via alkylation and carboxylation reactions.

11.
J Am Chem Soc ; 142(38): 16099-16116, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32818372

RESUMO

Recent advances in our mechanistic understanding of dye-sensitized electron transfer reactions occurring at metal oxide interfaces are described. These advances were enabled by the advent of mesoporous thin films, comprised of anatase TiO2 nanocrystallites, that are amenable to spectroscopic and electrochemical characterization in unprecedented molecular-level detail. The metal-to-ligand charge transfer (MLCT) excited states of Ru polypyridyl compounds serve as the dye sensitizers. Excited-state injection often occurs on ultrafast time scales with yields that can be tuned from unity to near zero through modification of the sensitizer or the electrolyte composition. Transport of the injected electron and the oxidized sensitizer (hole hopping) are both operative in the composite mechanism for charge recombination between the injected electron and the oxidized sensitizer. Sensitizers that contain a pendant electron donor, as well as core/shell SnO2/TiO2 nanostructures, often prolong the lifetime of the injected electron and provide fundamental insights into adiabatic and nonadiabatic electron transfer mechanisms. Regeneration of the oxidized sensitizer by iodide is enhanced through halogen bonding, orbital pathways, and ion pairing. A substantial ∼10 MV cm-1 electric field is created by electron injection into TiO2 nanocrystallites that induces ion migration, reports on the sensitizer dipole orientation, and (in some cases) reorients or flips the sensitizer. Dye-sensitized conductive oxides also promote long-lived charge separation with bias dependent kinetics that provide insights into the reorganization energies associated with electron and proton-coupled electron transfer in the electric double layer.


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Nanoestruturas/química , Titânio/química , Transporte de Elétrons , Tamanho da Partícula , Porosidade , Propriedades de Superfície
12.
ACS Appl Mater Interfaces ; 12(21): 23923-23930, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32356647

RESUMO

A comparative study of mesoporous thin films based on SnO2 (rutile) and TiO2 (anatase) nanocrystallites sensitized to visible light with [Ru(dtb)2(dcb)](PF6)2, where dtb = 4,4'-(tert-butyl)2-2,2'-bipyridine and dcb = 4,4'-(CO2H)2-2,2'-bipyridine, in CH3CN electrolyte solutions is reported to identify the reason(s) for the low efficiency of SnO2-based dye-sensitized solar cells (DSSCs). Pulsed laser excitation resulted in rapid excited state injection (kinj > 108 s-1) followed by sensitizer regeneration through iodide oxidation to yield an interfacial charge separated state abbreviated as MO2(e-)|Ru + I3-. Spectral features associated with I3- and the injected electron MO2(e-) were observed as well as a hypsochromic shift of the metal-to-ligand charge-transfer absorption of the sensitizer attributed to an electric field. The field magnitude ranged from 0.008 to 0.39 MV/cm and was dependent on the electrolyte cation (Mg2+ or Li+) as well as the oxide material. Average MO2(e-) + I3- → recombination rate constants quantified spectroscopically were about 25 times smaller for SnO2 (6.0 ± 0.14 s-1) than for TiO2 (160 ± 10 s-1). Transient photovoltage measurements of operational DSSCs indicated a 78 ms lifetime for electrons injected into SnO2 compared to 27 ms for TiO2; behavior that is at odds with the view that recombination with I3- underlies the low efficiencies of nanocrystalline SnO2-based DSSCs. In contrast, the average rate constant for charge recombination with the oxidized sensitizer, MO2(e-)|-S+ → MO2|-S, was about 2 orders of magnitude larger for SnO2 (k = 9.8 × 104 s-1) than for TiO2 (k = 1.6 × 103 s-1). Sensitizer regeneration through iodide oxidation were similar for both oxide materials (kreg = 6 ± 1 × 1010 M-1 s-1). The data indicate that enhanced efficiency from SnO2-based DSSCs can be achieved by identifying alternative redox mediators that enable rapid sensitizer regeneration and by inhibiting recombination of the injected electron with the oxidized sensitizer.

13.
Dalton Trans ; 49(45): 16368-16379, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32458940

RESUMO

This work describes the preparation of a new thiosemicarbazone derivative, (Z)-N-ethyl-2-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)hydrazinecarbothioamide (phet) and its respective Re(i) tricarbonyl chloro complex, fac-[ReCl(CO)3(phet)]. The spectroscopic, photophysical and electrochemical properties of the new complex were fully investigated through steady state and time-resolved techniques along with computational calculations. In fac-[ReCl(CO)3(phet)], the new ligand is coordinated to the metal center through the pyridyl rings of the phenanthroline moiety. The unbound electron pairs in the S atom of the bending thiosemicarbazone group induce new low energy lying electronic transitions. Consequently, enhanced visible light absorption up to 550 nm is observed in acetonitrile due to the overlap between MLCTRe→phet and ILphet(n→π*) transitions. The absorption bands and emission quantum yields of fac-[ReCl(CO)3(phet)] are sensitive to proton concentration due to an acid-basic equilibrium in the N atoms of the thiosemicarbazone. Proton dissociation constants of 10.0 ± 0.1 and 11.4 ± 0.2 were determined respectively for the ground and excited states of the new complex. Spectral changes could also be observed in the presence of Zn2+ cations which can be further explored for sensing applications. The electrochemical behavior of the new complex was studied in detail, revealing up to four one electron reduction processes in the range from 0 to -2.4 V vs. Fc+/Fc. With support of DFT calculations, the first three processes are ascribed to the reduction of the coordinated phet ligand followed by the ReI/0 reduction and consequent Cl- release. The new complex was able to act as an electrocatalyst for CO2 reduction into CO (Eonset = -1.92 V vs. Fc+/Fc), with a turnover frequency of 2.81 s-1 and turnover number of 24 ± 1 in anhydrous acetonitrile, being the first Re(i) tricarbonyl complex with a thiosemicarbazone derivative described for this goal. The detailed characterization carried out here can drive the development of new Re(i)-thiosemicarbazone derivatives for different applications.

14.
J Am Chem Soc ; 142(5): 2413-2428, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31881154

RESUMO

A series of 4,4'-dimethyl-2,2'-bipyridyl ruthenium complexes with carbonyl ligands were prepared and studied using a combination of electrochemical and spectroscopic methods with infrared detection to provide structural information on reaction intermediates in the photochemical reduction of CO2 to formate in acetonitrile (CH3CN). An unsaturated 5-coordinate intermediate was characterized, and the hydride-transfer step to CO2 from a singly reduced metal-hydride complex was observed with kinetic resolution. While triethanolamine (TEOA) was expected to act as a proton acceptor to ensure the sacrificial behavior of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as an electron donor, time-resolved infrared measurements revealed that about 90% of the photogenerated one-electron reduced complexes undergo unproductive back electron transfer. Furthermore, TEOA showed the ability to capture CO2 from CH3CN solutions to form a zwitterionic alkylcarbonate adduct and was actively engaged in key catalytic steps such as metal-hydride formation, hydride transfer to CO2 to form the bound formate intermediate, and dissociation of formate ion product. Collectively, the data provide an overview of the transient intermediates of Ru(II) carbonyl complexes and emphasize the importance of considering the participation of TEOA when investigating and proposing catalytic pathways.

15.
J Am Chem Soc ; 141(35): 13898-13904, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31364845

RESUMO

Light excitation of the sensitizer [Ru(NH3)5(eina)](PF6)2, where eina is ethyl isonicotinate, anchored to anatase TiO2 nanocrystallites interconnected in a mesoporous thin film and immersed in CH3CN resulted in spectroscopic changes consistent with both excited-state injection and sensitizer reorientation, termed flipping. When the light irradiation was removed, the sensitizers flipped back over. Such flipping was absent when the carboxylic acid derivative of the sensitizer was utilized or when SnO2/TiO2 core/shell materials were employed in place of TiO2. The flipping was attributed to the torque on the sensitizer in the electric field generated by the injected electrons. Pulsed light excitation was utilized to time-resolve flipping and charge recombination with this and the per-deuterated complex (ND3)5RuII(eina)|TiO2. In all cases, charge recombination was more rapid when the oxidized sensitizer was flipped over, behavior consistent with stronger electronic coupling. Kinetic isotope effects of 26.7 and 0.12 were determined for charge recombination and for flipping, respectively. Spectro-electrochemical measurements showed that thermal reduction of TiO2 with an applied potential also initiated flipping yet required much larger field strengths. The data show that the electric fields created at illuminated semiconductor interfaces are sufficient to reorientate molecules anchored to its surface.

16.
J Am Chem Soc ; 141(19): 7926-7933, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31021090

RESUMO

In artificial photosynthesis, the sun drives water splitting into H2 and O2 or converts CO2 into a useful form of carbon. In most schemes, water oxidation is typically the limiting half-reaction. Here, we introduce a molecular approach to the design of a photoanode that incorporates an electron acceptor, a sensitizer, an electron donor, and a water oxidation catalyst in a single molecular assembly. The strategy mimics the key elements in Photosystem II by initiating light-driven water oxidation with integration of a light absorber, an electron acceptor, an electron donor, and a catalyst in a controlled molecular environment on the surface of a conducting oxide electrode. Visible excitation of the assembly results in the appearance of reductive equivalents at the electrode and oxidative equivalents at a catalyst that persist for seconds in aqueous solutions. Steady-state illumination of the assembly with 440 nm light with an applied bias results in photoelectrochemical water oxidation with a per-photon absorbed efficiency of 2.3%. The results are notable in demonstrating that light-driven water oxidation can be carried out at a conductive electrode in a structure with the functional elements of Photosystem II including charge separation and water oxidation.

17.
J Chem Phys ; 150(4): 041719, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709314

RESUMO

Temperature dependent kinetics for back-electron transfer (BET) from electrons in TiO2 or SnO2/TiO2 core/shell nanoparticles to oxidized donor-bridge-acceptor (D-B-A) sensitizers is reported over a 110° range. Two D-B-A sensitizers (CF3-p and CF3-x) were utilized that differed only by the nature of the bridging ligand: a xylyl spacer that largely insulated the two redox active centers and a phenyl bridge that promoted strong electronic coupling and an adiabatic electron transfer mechanism. An Arrhenius analysis revealed that the activation energies were significantly larger for the core/shell oxides, Ea = 32 ± 4 kJ/mol, compared to TiO2 alone, Ea = 22 ± 6 kJ/mol. The barriers for BET on sensitized TiO2 were within the same range as previous literature reports, while this study represents the first quantification for SnO2/TiO2 core/shell materials. Two different models were proposed to rationalize the larger barrier for the core/shell materials: (1) a band edge offset model and (2) a low energy trap state model with recombination from the TiO2 rutile polymorph shell. The latter model was preferred and is in better agreement with the experimental data. The kinetic analysis also afforded the forward and reverse rate constants for the intramolecular equilibrium. In accordance with theoretical predictions and previous research, the absolute value of the free energy change was smaller for the adiabatic equilibrium provided by the phenyl bridge, i.e., |ΔGo ad| <|ΔGo|.

18.
Inorg Chem ; 58(5): 3316-3328, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30767522

RESUMO

Ground- and excited-state control of halide supramolecular assembly was achieved through the preparation of a series of ester- and amide-functionalized ruthenium polypyridyl complexes in CH2Cl2. Hydrogen-bonding amide and alcohol groups on the receptor ligand were found to direct interactions with halide, while halide association with the ethyl ester groups was not observed. The various functional groups on the receptor ligands tuned the ground-state equilibrium constants over 2 orders of magnitude (1 × 105 to 1 × 107 M-1), and the fractional contribution of each hydrogen-bond donor to the total equilibrium constant was determined. Pulsed-laser excitation of the complexes resulted in excited-state localization on the ester- or amide-functionalized ligands. In the case where the excited state was oriented toward an associated halide ion (the amide complexes), an 80 ± 10 meV Coulombic repulsion was induced that lowered the excited-state equilibrium constant ( K*eq) and resulted in halide photorelease. The rate constants for excited-state halide release ( k*21) were determined, and the values varied based on the functional groups present in the receptor ligand. Complexes with more hydrogen-bonding donors had smaller rate constants for halide photorelease. In a complex without a specific receptor ligand, the excited-state dipole was not oriented toward the associated halide, and the excited state was therefore found to have a larger equilibrium constant for halide association than the ground state.

19.
Angew Chem Int Ed Engl ; 57(47): 15390-15394, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30239080

RESUMO

Transparent conductive oxides (TCOs) are widely used commercially available materials for opto-electronic applications, yet they have received very little attention for dye-sensitization applications. Now, mesoporous thin films of conductive indium-doped tin oxide (ITO) nanocrystallites are shown to support long-lived charge separation with first-order recombination kinetics (k=1.5 s-1 ). A layer-by-layer technique was utilized to spatially arrange redox and/or chromophoric molecular components on ITO. Spectroelectrochemical measurements demonstrated that upon light absorption, each component provided a free-energy gradient to direct electron transfer at the conductive oxide interface. The long-lived nature of the photogenerated charge separated states provide favorable conditions for photocatalytic solar fuel production. Furthermore, the first-order recombination kinetics are most ideal for the fundamental understanding of interfacial charge separation dynamics.

20.
ACS Appl Mater Interfaces ; 10(37): 31312-31323, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30130392

RESUMO

Dye-sensitized bromide oxidation was investigated using a series of four ruthenium polypyridyl photocatalysts anchored to SnO2/TiO2 core/shell mesoporous thin films through 2,2'-bipyridine-4,4'-diphosphonic acid anchoring groups. The ground- and excited-state reduction potentials were tuned over 500 mV by the introduction of electron withdrawing groups in the 4 and 4' positions of the ancillary bipyridine ligands. Upon light excitation of the surface-bound photocatalysts, excited-state electron injection yielded an oxidized photocatalyst that was regenerated through bromide oxidation. High injection quantum yields (Φinj) and regeneration quantum yields (Φreg) were essential to obtain efficient bromide oxidation yet required a photocatalyst that is both a potent photoreductant and a strong oxidant after excited-state injection. The four photocatalysts utilized in this manuscript ranged from unity Φinj (1.0) and minimal Φreg (0.037) to minimal Φinj (0.09) and unity Φreg (1.0). The photocatalyst that displayed the highest overall dye-sensitized photoelectrosynthesis cell performances exhibited near unity Φreg (0.99), while a significant Φinj was still preserved (0.59). Thus, these results highlighted the delicate interplay between the ground- and excited-state reduction potentials of photocatalysts for dye-sensitized hydrobromic acid splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...