Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Dairy Res ; : 1-4, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35184776

RESUMO

The experiments reported in this research communication analysed the presence of methicillin-resistant Staphylococcus aureus (MRSA) in 112 samples of 'coalho' cheese, from 56 dairy producing farms in 28 cities in all mesoregions of the State of Ceará, Brazil. To assess antimicrobial resistance we also examined the presence of genes encoding enterotoxins and toxic shock syndrome toxin, as well as the presence of the blaZ gene for ß-lactamases, and resistance to oxacillin. The research found 69 isolates of S. aureus, of which 13.04% had the mecA gene encoding the penicillin-binding protein, which confers resistance to methicillin, in cheese samples from 6 different cities. This included the state capital, Fortaleza, which had the largest prevalence (23.19%) of mecA positive isolates. It was also found that 55.07% of the isolates of S. aureus had the blaZ gene, and 7.25% demonstrated resistance to oxacillin in the plate disc diffusion tests. We did not show the presence of isolates carrying toxigenic genes. The findings suggest that strict supervision of production processes in the dairy industry is necessary in all production scale processes, thus preventing contamination and possible problems for consumers.

2.
J Biomol Struct Dyn ; 40(22): 12302-12315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34436980

RESUMO

Chagas disease infects approximately seven million people worldwide. Benznidazole is effective only in the acute phase of the disease, with an average cure rate of 80% between acute and recent cases. Therefore, there is an urgent need to find new bioactive substances that can be effective against parasites without causing so many complications to the host. In this study, the triterpene 3ß-6ß-16ß-trihydroxilup-20 (29)-ene (CLF-1) was isolated from Combretum leprosum, and its molecular structure was determined by NMR and infrared spectroscopy. The CLF-1 was also evaluated in vitro and in silico as potential trypanocidal agent against epimastigote and trypomastigote forms of Trypanosoma cruzi (Y strain). The CLF-1 demonstrated good results highlighted by lower IC50 (76.0 ± 8.72 µM, 75.1 ± 11.0 µM, and 70.3 ± 45.4 µM) for epimastigotes at 24, 48 and 72 h, and LC50 (71.6 ± 11.6 µM) for trypomastigotes forms. The molecular docking study shows that the CLF-1 was able to interact with important TcGAPDH residues, suggesting that this natural compound may preferentially exert its effect by compromising the glycolytic pathway in T. cruzi. The ADMET study together with the MTT results indicated that the CLF-1 is well-absorbed in the intestine and has low toxicity. Thus, this work adds new evidence that CLF-1 can potentially be used as a candidate for the development of new options for the treatment of Chagas disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Chagas , Combretum , Triterpenos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Extratos Vegetais/química , Combretum/química , Triterpenos/farmacologia , Triterpenos/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
3.
Diagn Microbiol Infect Dis ; 95(3): 114860, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31353066

RESUMO

Chagas disease is caused by Trypanosoma cruzi and affects about 7 million people worldwide. Benznidazole and nifurtimox have low efficacy and high toxicity. The present study was designed to identify the trypanocidal effect of (-)-α-Bisabolol (BIS) and investigate its mechanism. Epimastigotes and trypomastigotes were cultured with BIS and the viable cells were counted. BIS antiamastigote effect was evaluated using infected LLC-MK2 cells. MTT assay was performed to evaluate BIS cytotoxicity. Growth recovery was assessed to evaluate BIS effect after short times of exposure. BIS mechanism was investigated through flow cytometry, with 7-AAD and Annexin V-PE. DCFH-DA, rhodamine 123 (Rho123) and acridine orange (AO). Finally, enzymatic and computational assays were performed to identify BIS interaction with T. cruzi GAPDH (tcGAPDH). BIS showed an inhibitory effect on epimastigotes after all tested periods, as well on trypomastigotes. It caused cytotoxicity on LLC-MK2 cells at higher concentrations, with selectivity index (SeI) = 26.5. After treatment, infected cells showed a decrease in infected cells, the number of amastigotes per infected cell and the survival index (SuI). Growth recovery demonstrated that BIS effect causes rapid death of T. cruzi. Flow cytometry showed that BIS biological effect is associated with apoptosis induction, increase in cytoplasmic ROS and mitochondrial transmembrane potential, while reservosome swelling was observed at a late stage. Also, BIS action mechanism may be associated to tcGAPDH inhibition. Altogether, the results demonstrate that BIS causes cell death in Trypanosoma cruzi Y strain forms, with the involvement of apoptosis and oxidative stress and enzymatic inhibition.


Assuntos
Sesquiterpenos Monocíclicos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Concentração Inibidora 50 , Macaca mulatta , Simulação de Acoplamento Molecular , Estrutura Molecular , Sesquiterpenos Monocíclicos/química , Estresse Oxidativo/efeitos dos fármacos , Trypanosoma cruzi/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...