Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(8): e1011566, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651449

RESUMO

As an obligate intracellular parasite, Toxoplasma gondii must import essential nutrients from the host cell into the parasitophorous vacuole. We previously reported that the parasite scavenges cholesterol from host endocytic organelles for incorporation into membranes and storage as cholesteryl esters in lipid droplets. In this study, we have investigated whether Toxoplasma utilizes cholesterol as a precursor for the synthesis of metabolites, such as steroids. In mammalian cells, steroidogenesis occurs in mitochondria and involves membrane-bound type I cytochrome P450 oxidases that are activated through interaction with heme-binding proteins containing a cytochrome b5 domain, such as members of the membrane-associated progesterone receptor (MAPR) family. Our LC-MS targeted lipidomics detect selective classes of hormone steroids in Toxoplasma, with a predominance for anti-inflammatory hydroxypregnenolone species, deoxycorticosterone and dehydroepiandrosterone. The genome of Toxoplasma contains homologs encoding a single type I CYP450 enzyme (we named TgCYP450mt) and a single MAPR (we named TgMAPR). We showed that TgMAPR is a hemoprotein with conserved residues in a heme-binding cytochrome b5 domain. Both TgCYP450 and TgMAPR localize to the mitochondrion and show interactions in in situ proximity ligation assays. Genetic ablation of cyp450mt is not tolerated by Toxoplasma; we therefore engineered a conditional knockout strain and showed that iΔTgCYP450mt parasites exhibit growth impairment in cultured cells. Parasite strains deficient for mapr could be generated; however, ΔTgMAPR parasites suffer from poor global fitness, loss of plasma membrane integrity, aberrant mitochondrial cristae, and an abnormally long S-phase in their cell cycle. Compared to wild-type parasites, iΔTgCYP450mt and ΔTgMAPR lost virulence in mice and metabolomics studies reveal that both mutants have reduced levels of steroids. These observations point to a steroidogenic pathway operational in the mitochondrion of a protozoan that involves an evolutionary conserved TgCYP450mt enzyme and its binding partner TgMAPR.


Assuntos
Toxoplasma , Animais , Camundongos , Toxoplasma/genética , Citocromos b5/genética , Mitocôndrias , Sistema Enzimático do Citocromo P-450 , Membranas Mitocondriais , Progesterona , Mamíferos
2.
Mol Microbiol ; 87(5): 951-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23374239

RESUMO

Lipid bodies are eukaryotic structures for temporary storage of neutral lipids such as acylglycerols and steryl esters. Fatty acyl-CoA and cholesterol are two substrates for cholesteryl ester (CE) synthesis via the ACAT reaction. The intracellular parasite Toxoplasma gondii is incapable of sterol synthesis and unremittingly scavenges cholesterol from mammalian host cells. We previously demonstrated that the parasite expresses a cholesteryl ester-synthesizing enzyme, TgACAT1. In this article, we identified and characterized a second ACAT-like enzyme, TgACAT2, which shares 56% identity with TgACAT1. Both enzymes are endoplasmic reticulum-associated and contribute to CE formation for storage in lipid bodies. While TgACAT1 preferentially utilizes palmitoyl-CoA, TgACAT2 has broader fatty acid specificity and produces more CE. Genetic ablation of each individual ACAT results in parasite growth impairment whereas dual ablation of ACAT1 and ACAT2 is not tolerated by Toxoplasma. ΔACAT1 and ΔACAT2 parasites have reduced CE levels, fewer lipid bodies, and accumulate free cholesterol, which causes injurious membrane effects. Mutant parasites are particularly vulnerable to ACAT inhibitors. This study underlines the important physiological role of ACAT enzymes to store cholesterol in a sterol-auxotrophic organism such as Toxoplasma, and furthermore opens up possibilities of exploiting TgACAT as targets for the development of antitoxoplasmosis drugs.


Assuntos
Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Colesterol/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Acetil-CoA C-Acetiltransferase/genética , Sequência de Aminoácidos , Animais , Retículo Endoplasmático/enzimologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Transporte Proteico , Proteínas de Protozoários/genética , Alinhamento de Sequência , Especificidade por Substrato , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/metabolismo
3.
PLoS One ; 7(12): e51773, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272165

RESUMO

Present on the plasma membrane of most metazoans, caveolae are specialized microdomains implicated in several endocytic and trafficking mechanisms. Caveolins and the more recently discovered cavins are the major protein components of caveolae. Previous studies reported that caveolar invaginations can be induced de novo on the surface of caveolae-negative mammalian cells upon heterologous expression of caveolin-1. However, it remains undocumented whether other components in the transfected cells participate in caveolae formation. To address this issue, we have exploited the protozoan Toxoplasma as a heterologous expression system to provide insights into the minimal requirements for caveogenesis and caveolar endocytosis. Upon expression of caveolin-1, Toxoplasma accumulates prototypical exocytic caveolae 'precursors' in the cytoplasm. Toxoplasma expressing caveolin-1 alone, or in conjunction with cavin-1, neither develops surface-located caveolae nor internalizes caveolar ligands. These data suggest that the formation of functional caveolae at the plasma membrane in Toxoplasma and, by inference in all non-mammalian cells, requires effectors other than caveolin-1 and cavin-1. Interestingly, Toxoplasma co-expressing caveolin-1 and cavin-1 displays an impressive spiraled network of membranes containing the two proteins, in the cytoplasm. This suggests a synergistic activity of caveolin-1 and cavin-1 in the morphogenesis and remodeling of membranes, as illustrated for Toxoplasma.


Assuntos
Cavéolas/metabolismo , Endocitose , Toxoplasma/metabolismo , Animais , Animais Geneticamente Modificados , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico , Toxoplasma/genética
4.
J Biol Chem ; 287(20): 16289-99, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22451671

RESUMO

The obligate intracellular and promiscuous protozoan parasite Toxoplasma gondii needs an extensive membrane biogenesis that must be satisfied irrespective of its host-cell milieu. We show that the synthesis of the major lipid in T. gondii, phosphatidylcholine (PtdCho), is initiated by a novel choline kinase (TgCK). Full-length (∼70-kDa) TgCK displayed a low affinity for choline (K(m) ∼0.77 mM) and harbors a unique N-terminal hydrophobic peptide that is required for the formation of enzyme oligomers in the parasite cytosol but not for activity. Conditional mutagenesis of the TgCK gene in T. gondii attenuated the protein level by ∼60%, which was abolished in the off state of the mutant (Δtgck(i)). Unexpectedly, the mutant was not impaired in its growth and exhibited a normal PtdCho biogenesis. The parasite compensated for the loss of full-length TgCK by two potential 53- and 44-kDa isoforms expressed through a cryptic promoter identified within exon 1. TgCK-Exon1 alone was sufficient in driving the expression of GFP in E. coli. The presence of a cryptic promoter correlated with the persistent enzyme activity, PtdCho synthesis, and susceptibility of T. gondii to a choline analog, dimethylethanolamine. Quite notably, the mutant displayed a regular growth in the off state despite a 35% decline in PtdCho content and lipid synthesis, suggesting a compositional flexibility in the membranes of the parasite. The observed plasticity of gene expression and membrane biogenesis can ensure a faithful replication and adaptation of T. gondii in disparate host or nutrient environments.


Assuntos
Colina Quinase/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Mutagênese , Fosfatidilcolinas/biossíntese , Proteínas de Protozoários/biossíntese , Toxoplasma/enzimologia , Sequência de Bases , Colina Quinase/genética , Deanol/metabolismo , Dados de Sequência Molecular , Mutação , Fosfatidilcolinas/genética , Multimerização Proteica/fisiologia , Proteínas de Protozoários/genética , Toxoplasma/genética
5.
PLoS Pathog ; 7(12): e1002410, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174676

RESUMO

Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the phylogenetically conserved 'sterol-sensing domain' (SSD). The intracellular parasite Toxoplasma possesses at least one gene coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease. We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses on the ΔNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters, sphingomyelins and ceramides. ΔNCR1 parasites are also characterized by abundant storage lipid bodies and long membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in mice than the parental strain. These data suggest that the ΔNCR1 strain has lost the ability to control the intracellular levels of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division. Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteína C1 de Niemann-Pick , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasmose Animal/genética , Toxoplasmose Animal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...