Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(17): 3793-3801, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33904739

RESUMO

The Pacific Northwest National Laboratory (PNNL) gas-phase database is a compilation of quantitative experimental (5, 25, and 50 °C) infrared spectra of ca. 500 molecules, designed for in situ, standoff or remote sensing of gases and vapors at or near atmospheric pressure. The data are characterized by calibration on both the wavenumber and intensity axes. Recent papers have called into question the PNNL intensity values for isobutane, [2-methylpropane, HC(CH3)3], suggesting discrepancies of 30-40%. In this study, we remeasure and re-examine the intensity values of isobutane using both similar and alternate methods to those used to generate the original PNNL database spectra. Indirect confirmation from literature data of homologous molecules and direct confirmation from new results confirm that for many band integrals across the isobutane spectrum, the original PNNL data are indeed accurate to within the reported 3% experimental uncertainty.

2.
J Phys Chem A ; 121(6): 1195-1212, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27983851

RESUMO

Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules on the basis of far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-trans conformer, but a few appear to be uniquely associated with the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (70% upon going from 5 to 50 o C). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, approximately doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.

3.
J Phys Chem A ; 120(30): 5993-6003, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27397573

RESUMO

Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities. It has recently been observed in biomass burning events and is a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O-H···O═C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations and GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption band strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications.

4.
J Phys Chem A ; 117(20): 4096-107, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23586688

RESUMO

Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semivolatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure GA vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and also derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the ν10 band Q-branch at 860.51 cm(-1), we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first IR field measurements of GA in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (grams of GA emitted per kilogram of biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires, and we calculate that it accounts for ∼18% of the aqueous-phase SOA precursors that we were able to measure.


Assuntos
Acetaldeído/análogos & derivados , Poluentes Atmosféricos/análise , Fumaça , Acetaldeído/análise , Biomassa , Espectrofotometria Infravermelho , Vibração , Volatilização
5.
J Phys Chem A ; 116(12): 3124-36, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22335603

RESUMO

The infrared absorption spectrum of ammonia borane vapor has been recorded between 3600 and 600 cm(-1). Of the eleven infrared active fundamental vibrational modes, seven modes of NH(3)(11)BH(3) and four modes of NH(3)(10)BH(3) were observed. The spectra were recorded with sufficient resolution to observe the rotational structure of the bands, which allowed for preliminary least-squares fitting of the band origins and rotational constants. First-principles electronic structure calculations were performed to obtain anharmonic band origins and their intensities. The band assignments are discussed in relation to other spectroscopic techniques that have been previously used to study this molecule. A semi-empirical estimate of the vapor pressure of ammonia borane at room temperature (22 °C) was made and found to be ~1 × 10(-4) Torr. The assignment of the measured modes was aided by the calculated anharmonic frequencies and their infrared intensities. The combination of the CCSD(T) harmonic frequencies with the B3LYP anharmonicities, obtained from second-order vibrational perturbation theory, was found to produce an overall best agreement with the measured band origins.

6.
J Phys Chem A ; 115(35): 9886-900, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21755958

RESUMO

Glyoxal, methylglyoxal, and 2,3-butanedione (diacetyl) are all known biomass burning effluents and suspected aerosol precursors. Pressure-broadened quantitative infrared spectra of glyoxal, methylglyoxal, and diacetyl vapors covering the 520-6500 cm(-1) range are reported at 0.112 cm(-1) resolution, each with a composite spectrum derived from a minimum of 10 different sample pressures for the compound, representing some of the first quantitative intensity data for these analytes. Many vibrational assignments for methylglyoxal are reported for the first time, as are some near-IR and far-IR bands of glyoxal and diacetyl. To complete the vibrational assignments, the far-infrared spectra (25-600 cm(-1)) of all three vapors are also reported, those of methylglyoxal for the first time. Density functional theory and ab initio MP2 theory are used to help assign vibrational modes. Potential bands for atmospheric monitoring are discussed.


Assuntos
Atmosfera/química , Diacetil/análise , Glioxal/análise , Monitoramento Ambiental , Estrutura Molecular , Fotólise , Aldeído Pirúvico/análise , Espectrofotometria Infravermelho/métodos , Vibração , Volatilização
7.
Rapid Commun Mass Spectrom ; 25(9): 1282-90, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21488126

RESUMO

Stable isotope analysis permits the tracking of physical, chemical, and biological reactions and source materials at a wide variety of spatial scales. We present a laser ablation isotope ratio mass spectrometry (LA-IRMS) method that enables δ(13)C measurement of solid samples at 50 µm spatial resolution. The method does not require sample pre-treatment to physically separate spatial zones. We use laser ablation of solid samples followed by quantitative combustion of the ablated particulates to convert sample carbon into CO(2). Cryofocusing of the resulting CO(2) coupled with modulation in the carrier flow rate permits coherent peak introduction into an isotope ratio mass spectrometer, with only 65 ng carbon required per measurement. We conclusively demonstrate that the measured CO(2) is produced by combustion of laser-ablated aerosols from the sample surface. We measured δ(13)C for a series of solid compounds using laser ablation and traditional solid sample analysis techniques. Both techniques produced consistent isotopic results but the laser ablation method required over two orders of magnitude less sample. We demonstrated that LA-IRMS sensitivity coupled with its 50 µm spatial resolution could be used to measure δ(13) C values along a length of hair, making multiple sample measurements over distances corresponding to a single day's growth. This method will be highly valuable in cases where the δ(13)C analysis of small samples over prescribed spatial distances is required. Suitable applications include forensic analysis of hair samples, investigations of tightly woven microbial systems, and cases of surface analysis where there is a sharp delineation between different components of a sample.


Assuntos
Isótopos de Carbono/análise , Cabelo/química , Lasers , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Aerossóis/química , Animais , Desenho de Equipamento , Cavalos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Faraday Discuss ; 147: 65-81; discussion 83-102, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302543

RESUMO

In this paper we describe the first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which has been observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25 degrees S and 75 degrees N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.

9.
Anal Bioanal Chem ; 395(2): 377-86, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19434399

RESUMO

We report quantitative infrared spectra of vapor-phase hydrogen peroxide (H(2)O(2)) with all spectra pressure-broadened to atmospheric pressure. The data were generated by injecting a concentrated solution (83%) of H(2)O(2) into a gently heated disseminator and diluting it with pure N(2) carrier gas. The water vapor lines were quantitatively subtracted from the resulting spectra to yield the spectrum of pure H(2)O(2). The results for the nu(6) band strength (including hot bands) compare favorably with the results of Klee et al. (J Mol. Spectrosc. 195:154, 1999) as well as with the HITRAN values. The present results are 433 and 467 cm(-2) atm(-1) (+/-8 and +/-3% as measured at 298 and 323 K, respectively, and reduced to 296 K) for the band strength, matching well the value reported by Klee et al. (S = 467 cm(-2) atm(-1) at 296 K) for the integrated band. The nu(1) + nu(5) near-infrared band between 6,900 and 7,200 cm(-1) has an integrated intensity S = 26.3 cm(-2) atm(-1), larger than previously reported values. Other infrared and near-infrared bands and their potential for atmospheric monitoring are discussed.

10.
J Phys Chem A ; 112(49): 12637-46, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19007193

RESUMO

A wide-ranging investigation of high-resolution infrared spectra of 1,3-butadiene was undertaken with the prime objective of finding subbands in the rotational structure attributable to the gauche rotamer, from which information about the molecular structure could be derived. A weak band near 750 cm(-1), which had previously been assigned to the gauche rotamer, has been shown to be a difference band for the trans rotamer. In support of the analysis of this band, the rotational structure, including two hot bands, was analyzed in the C-type band for the nu(12)(a(u)) mode near 525 cm(-1) and in the C-type band near 162 cm(-1) for the nu(13)(a(u)) mode. An unsuccessful attempt was made to extend the analysis of the B-type component of the A/B-type band for nu(17)(b(u)) near 3000 cm(-1). With the exception of the two weak Q branches at 463.82 and 462.16 cm(-1), no new evidence for the gauche rotamer in the gas phase was found.

11.
J Phys Chem A ; 112(7): 1480-92, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18217730

RESUMO

Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and 18O,18O-tropolone(OH) in the 800 to 300 cm-1 spectral range. No FTIR absorption was detected in the 300-150 cm-1 range. The known zero-point (ZP) tunneling splitting values Delta0 = 0.974 cm-1 for tropolone(OH) (Tanaka et al.) and 0.051 cm-1 for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Deltav to be estimated for fundamentals including three with strong O...O stretching displacements [cf. for tropolone(OH) nu13(a1) = 435.22 cm-1 with HDelta13 = 1.71 cm-1 = 1.76 HDelta0, and for tropolone(OD) nu13(a1) = 429.65 cm-1 with DDelta13 = 0.32 cm-1 = 6.27 DDelta0]. The majority of Deltav splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta0 values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing Deltav splittings and many OH/D and 18O/16O isotope effects. Approximate values are obtained for the ZP splittings 88Delta0 and 86Delta0 of the doubly and singly 18O-labeled isotopomers of tropolone(OH). The diverse values of the observed Deltav/Delta0 splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction.

12.
J Phys Chem A ; 111(44): 11328-41, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17616110

RESUMO

We present experimental infrared spectra and theoretical electronic structure results for the geometry, anharmonic vibrational frequencies, and accurate estimates of the magnitude and the origin of the ring-puckering barrier in C4F8. High-resolution (0.0015 cm-1) spectra of the nu12 and nu13 parallel bands of perfluorocyclobutane (c-C4F8) were recorded for the first time by expanding a 10% c-C4F8 in helium mixture in a supersonic jet. Both bands are observed to be rotationally resolved in a jet with a rotational temperature of 15 K. The nu12 mode has b2 symmetry under D2d that correlates to a2u symmetry under D4h and consequently has +/- <-- +/- ring-puckering selection rules. A rigid rotor fit of the nu12 band yields the origin at 1292.56031(2) cm-1 with B' = 0.0354137(3) cm-1 and B' ' = 0.0354363(3) cm-1. The nu13 mode is of b2 symmetry under D2d that correlates to b2g under D4h, and in this case, the ring-puckering selection rules are +/- <-- -/+ . Rotational transitions from the ground and first excited torsional states will be separated by the torsional splitting in the ground and excited vibrational states, and indeed, we observe a splitting of each transition into strong and weak intensity components with a separation of approximately 0.0018 cm-1. The strong and weak sets of transitions were fit separately again using a rigid rotor model to give nu13(strong) = 1240.34858(4) cm-1, B' = 0.0354192(7) cm-1, and B' ' = 0.0354355(7) cm-1 and nu13(weak) = 1240.34674(5) cm-1, B' = 0.0354188(9) cm-1, and B' ' = 0.0354360(7) cm-1. High-level electronic structure calculations at the MP2 and CCSD(T) levels of theory with the family of correlation consistent basis sets of quadruple-zeta quality, developed by Dunning and co-workers, yield best estimates for the vibrationally averaged structural parameters r(C-C) = 1.568 A, r(C-F)alpha = 1.340 A, r(C-F)beta = 1.329 A, alpha(F-C-F) = 110.3 degrees , thetaz(C-C-C) = 89.1 degrees , and delta(C-C-C-C) = 14.6 degrees and rotational constants of A = B = 0.03543 cm-1 and C = 0.02898 cm-1, the latter within 0.00002 cm-1 from the experimentally determined values. Anharmonic vibrational frequencies computed using higher energy derivatives at the MP2 level of theory are all within <27 cm-1 (in most cases <5 cm-1) from the experimentally measured fundamentals. Our best estimate for the ring-puckering barrier at the CCSD(T)/CBS (complete basis set) limit is 132 cm-1. Analysis of the C4F8 electron density suggests that the puckering barrier arises principally from the sigmaCC-->sigmaCF hyperconjugative interactions that are more strongly stabilizing in the puckered than in the planar form. These interactions are, however, somewhat weaker in C4F8 than in C4H8, a fact that is consistent with the smaller barrier in the former (132 cm-1) with respect to the latter (498 cm-1).


Assuntos
Ciclobutanos/química , Fluorocarbonos/química , Modelos Químicos , Conformação Molecular , Sensibilidade e Especificidade , Espectrofotometria Infravermelho/métodos
13.
J Phys Chem A ; 110(31): 9633-42, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16884197

RESUMO

The Fourier transform infrared spectrum of tropolone(OH) vapor in the 1175-1700 cm(-1) region is reported at 0.0025 and 0.10 cm(-1) spectral resolutions. The 12 vibrational fundamentals in this region of rapidly rising vibrational state density are dominated by mixtures of the CC, CO, CCH, and COH internal coordinates. Estimates based on the measurement of sharp Q branch peaks are reported for 11 of the spectral doublet component separations DS(v) = |Delta(v) +/- Delta(0)|. Delta(0) = 0.974 cm(-1) is the known zero-point splitting, and three a(1) modes show tunneling splittings Delta(v) approximately Delta(0), four b(2) modes show splittings Delta(v) approximately 0.90Delta(0), and the remaining four modes show splittings Delta(v) falling 5-14% from Delta(0.) Significantly, the splitting for the nominal COH bending mode nu(8) (a(1)) is small, that is, 10% from Delta(0). Many of the vibrational excited states demonstrate strong anharmonic behavior, but there are only mild perturbations on the tautomerization mechanism driving Delta(0). The data suggest, especially for the higher frequency a(1) fundamentals, the onset of selective intramolecular vibrational energy redistribution processes that are fast on the time scale of the tautomerization process. These appear to delocalize and smooth out the topographical modifications of the zero-point potential energy surface that are anticipated to follow absorption of the nu(v) photon. Further, the spectra show the propensity for the Delta(v) splittings of b(2) and other complex vibrations to be damped relative to Delta(0).

14.
J Chem Phys ; 122(22): 224311, 2005 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15974672

RESUMO

Infrared-absorption profiles observed for vibrational transitions of gaseous tropolone often show sharp Q branch peaks, some of them ultranarrow spikes, indicative of the band origins for vibrational state-specific spectral tunneling doublets. In this work oxygen isotope effects for two CH wagging fundamentals, the COH torsion fundamental, and the skeletal contortion fundamental are reported. They allow considerations to be given: (1) oxygen isotope effects on the vibrational frequencies and state-specific tunneling splittings; (2) the asymmetry offset of the potential-energy minima for 16O and 18O tropolone; and (3) additional details concerning previously proposed high J rotation-contortion resonances in the contortional fundamental. The new results help to characterize the skeletal contortion fundamental and support the joint participation of skeletal tunneling with H tunneling in the vibrational state-specific tautomerization processes of tropolone in its ground electronic state.


Assuntos
Isótopos de Oxigênio/química , Teoria Quântica , Tropolona/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Appl Spectrosc ; 58(12): 1452-61, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15606959

RESUMO

The National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) are each creating quantitative databases containing the vapor-phase infrared spectra of pure chemicals. The digital databases have been created with both laboratory and remote-sensing applications in mind. A spectral resolution of approximate, equals 0.1 cm(-1) was selected to avoid degrading sharp spectral features, while also realizing that atmospheric broadening typically limits line widths to 0.1 cm(-1). Calculated positional (wave- number, cm(-1)) uncertainty is /=9) path length-concentration burdens and fitting a weighted Beer's law plot to each wavenumber channel. The two databases include different classes of compounds and were compared using 12 samples. Though these 12 samples span a range of polarities, absorption strengths, and vapor pressures, the data agree to within experimental uncertainties with only one exception.


Assuntos
Bases de Dados Factuais , Gases/análise , Gases/normas , Padrões de Referência , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/normas , Calibragem/normas , Gases/química , Transição de Fase , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Estados Unidos
16.
Appl Opt ; 41(15): 2831-9, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12027170

RESUMO

Two Fourier transform infrared intensity artifacts have been observed at moderately high (0.1 cm(-1)) spectral resolution: Light reflected off the aperture was double modulated by the interferometer, producing a 2f alias, and the warm (approximately 310 K) annulus of the aperture seen by a cooled detector resulted in distorted line shapes and anomalous intensities in the fingerprint region. Although the second artifact has been alluded to previously, we report corrections to remove both of these anomalies and to demonstrate the efficacy of these corrections. Prior to correction, integrated-band intensities were found to be in error by up to 12%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...