Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 926: 148618, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821327

RESUMO

Non-polio enterovirus infections are known to cause a variety of diseases and neurological complications. It is also known that the severity of these diseases largely differs among individuals with different genotypes and alleles. The Single Nucleotide Polymorphisms (SNPs) within specific genes have a considerable effect on the immune response to enteroviruses and on the outcome of disease, leading to variations in complications and infection susceptibility. Knowing the distribution of such SNPs can be valuable for individual case management and studying epidemiological parameters of enterovirus infections. In this feasibility study, a multiplex version of the primer extension-based technique called the SNaPshot Assay has been developed to examine SNPs in various relevant genes for predicting the clinical severity of enterovirus infections. It is already established that this technique is precise, consistent, scalable, and likely to exhibit high throughput. The multiplex SNaPshot can investigate multiple genetic susceptibility markers simultaneously, and the assay can be used to identify vulnerable populations, understand the epidemiology of infections, and manage the outbreaks of enteroviruses. Based on the literature, 15 SNPs were identified which are suspected for higher susceptibility to the worst outcomes after enterovirus infection and the assay was developed. Blood samples of 100 healthy volunteers were collected and tested for assay feasibility as well as to know the proportions of 15 selected SNPs. After the analysis, seven SNPs have been identified and suggested to be considered for future assays. Based on the pilot test results, it appears that positivity for any three out of the identified seven SNPs might indicate a higher risk, and future studies correlated with clinical studies among patients with and without severe diseases utilizing this assay will provide robust parameters to determine at-risk individuals more accurately.


Assuntos
Infecções por Enterovirus , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Humanos , Infecções por Enterovirus/genética , Infecções por Enterovirus/diagnóstico , Índice de Gravidade de Doença , Enterovirus/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Genótipo , Feminino , Masculino
2.
Chemistry ; 29(7): e202202622, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325647

RESUMO

Demystifying the sulfation code of glycosaminoglycans (GAGs) to induce precise homing of nanoparticles in tumor cells or neurons influences the development of a potential drug- or gene-delivery system. However, GAGs, particularly heparan sulfate (HS) and chondroitin sulfate (CS), are structurally highly heterogeneous, and synthesizing well-defined HS/CS composed nanoparticles is challenging. Here, we decipher how specific sulfation patterns on HS and CS regulate receptor-mediated homing of nanoprobes in primary and secondary cells. We discovered that aggressive cancer cells such as MDA-MB-231 displayed a strong uptake of GAG-nanoprobes compared to mild or moderately aggressive cancer cells. However, there was no selectivity towards the GAG sequences, thus indicating the presence of more than one form of receptor-mediated uptake. However, U87 cells, olfactory bulb, and hippocampal primary neurons showed selective or preferential uptake of CS-E-coated nanoprobes compared to other GAG-nanoprobes. Furthermore, mechanistic studies revealed that the 4,6-O-disulfated-CS nanoprobe used the CD44 and caveolin-dependent endocytosis pathway for uptake. These results could lead to new opportunities to use GAG nanoprobes in nanomedicine.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...