Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38976911

RESUMO

The purpose of this study was to quantify the total energy expenditure (TEE) of international female rugby union players. Fifteen players were assessed over 14-days throughout an international multi-game tournament, which represented two consecutive one-match microcycles. Resting metabolic rate (RMR) and TEE were assessed by indirect calorimetry and doubly labelled water, respectively. Physical activity level (PAL) was estimated (TEE:RMR). Mean RMR, TEE, and PAL were 6.60 ± 0.93 MJ.day-1, 13.51 ± 2.28 MJ.day-1 and 2.0 ± 0.3 AU, respectively. There was no difference in TEE (13.74 ± 2.31 vs. 13.92 ± 2.10 MJ.day-1; p = 0.754), or PAL (2.06 ± 0.26 AU vs. 2.09 ± 0.23 AU; p = 0.735) across microcycles, despite substantial decreases in training load (total distance: -8088 m, collisions: -20 n, training duration: -252 min). After correcting for body composition, there was no difference in TEE (13.80 ± 1.74 vs. 13.16 ± 1.97 adj. MJ.day-1, p = 0.190), RMR (6.49 ± 0.81 vs. 6.73 ± 0.83 adj. MJ.day-1, p = 0.633) or PAL (2.15 ± 0.14 vs 1.87 ± 0.26 AU, p = 0.090) between forwards and backs. For an injured participant (n = 1), TEE reduced by 1.7 MJ.day-1 from pre-injury. For participants with illness (n = 3), TEE was similar to pre-illness (+0.49 MJ.day-1). The energy requirements of international female rugby players were consistent across one-match microcycles. Forwards and backs had similar adjusted energy requirements. These findings are critical to inform the dietary guidance provided to female rugby players.

2.
PLoS One ; 19(5): e0298709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743656

RESUMO

This is the first study to assess longitudinal changes in anthropometric, physiological, and physical qualities of international women's rugby league players. Thirteen forwards and 11 backs were tested three times over a 10-month period. Assessments included: standing height and body mass, body composition measured by dual x-ray absorptiometry (DXA), a blood panel, resting metabolic rate (RMR) assessed by indirect calorimetry, aerobic capacity (i.e.,[Formula: see text]) evaluated by an incremental treadmill test, and isometric force production measured by a force plate. During the pre-season phase, lean mass increased significantly by ~2% for backs (testing point 1: 47 kg; testing point 2: 48 kg) and forwards (testing point 1: 50 kg; testing point 2: 51 kg) (p = ≤ 0.05). Backs significantly increased their [Formula: see text] by 22% from testing point 1 (40 ml kg-1 min-1) to testing point 3 (49 ml kg-1 min-1) (p = ≤ 0.04). The [Formula: see text] of forwards increased by 10% from testing point 1 (41 ml kg-1 min-1) to testing point 3 (45 ml kg-1 min-1), however this change was not significant (p = ≥ 0.05). Body mass (values represent the range of means across the three testing points) (backs: 68 kg; forwards: 77-78 kg), fat mass percentage (backs: 25-26%; forwards: 30-31%), resting metabolic rate (backs: 7 MJ day-1; forwards: 7 MJ day-1), isometric mid-thigh pull (backs: 2106-2180 N; forwards: 2155-2241 N), isometric bench press (backs: 799-822 N; forwards: 999-1024 N), isometric prone row (backs: 625-628 N; forwards: 667-678 N) and bloods (backs: ferritin 21-29 ug/L, haemoglobin 137-140 g/L, iron 17-21 umol/L, transferrin 3 g/L, transferring saturation 23-28%; forwards: ferritin 31-33 ug/L, haemoglobin 141-145 g/L, iron 20-23 umol/L, transferrin 3 g/L, transferrin saturation 26-31%) did not change (p = ≥ 0.05). This study provides novel longitudinal data which can be used to better prepare women rugby league players for the unique demands of their sport, underpinning female athlete health.


Assuntos
Metabolismo Basal , Composição Corporal , Futebol Americano , Humanos , Feminino , Adulto , Composição Corporal/fisiologia , Futebol Americano/fisiologia , Estudos Longitudinais , Adulto Jovem , Antropometria , Atletas , Absorciometria de Fóton , Teste de Esforço , Índice de Massa Corporal , Rugby
3.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352378

RESUMO

BACKGROUND: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS: Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS: These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.

4.
Neuropsychopharmacology ; 49(2): 377-385, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37452139

RESUMO

Corticotropin-releasing factor (CRF) in the anterior bed nucleus of the stria terminalis (aBNST) is associated with chronic stress and avoidance behavior. However, CRF + BNST neurons project to reward- and motivation-related brain regions, suggesting a potential role in motivated behavior. We used chemogenetics to selectively activate CRF+ aBNST neurons in male and female CRF-ires-Cre mice during an effort-related choice task and a concurrent choice task. In both tasks, mice were given the option either to exert effort for high value rewards or to choose freely available low value rewards. Acute chemogenetic activation of CRF+ aBNST neurons reduced barrier climbing for a high value reward in the effort-related choice task in both males and females. Furthermore, acute chemogenetic activation of CRF+ aBNST neurons also reduced effortful lever pressing in high-performing males in the concurrent choice task. These data suggest a novel role for CRF+ aBNST neurons in effort-based decision and motivation behaviors.


Assuntos
Hormônio Liberador da Corticotropina , Núcleos Septais , Camundongos , Masculino , Feminino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/metabolismo , Motivação , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
5.
Psychoneuroendocrinology ; 161: 106920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128260

RESUMO

Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.


Assuntos
Transtorno Depressivo Maior , Núcleos Septais , Humanos , Camundongos , Feminino , Masculino , Animais , Núcleos Septais/fisiologia , Transtorno Depressivo Maior/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , RNA/metabolismo
6.
Mol Psychiatry ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386058

RESUMO

Although clinical reports have highlighted association of the deacetylase sirtuin 1 (SIRT1) gene with anxiety, its exact role in the pathogenesis of anxiety disorders remains unclear. The present study was designed to explore whether and how SIRT1 in the mouse bed nucleus of the stria terminalis (BNST), a key limbic hub region, regulates anxiety. In a chronic stress model to induce anxiety in male mice, we used site- and cell-type-specific in vivo and in vitro manipulations, protein analysis, electrophysiological and behavioral analysis, in vivo MiniScope calcium imaging and mass spectroscopy, to characterize possible mechanism underlying a novel anxiolytic role for SIRT1 in the BNST. Specifically, decreased SIRT1 in parallel with increased corticotropin-releasing factor (CRF) expression was found in the BNST of anxiety model mice, whereas pharmacological activation or local overexpression of SIRT1 in the BNST reversed chronic stress-induced anxiety-like behaviors, downregulated CRF upregulation, and normalized CRF neuronal hyperactivity. Mechanistically, SIRT1 enhanced glucocorticoid receptor (GR)-mediated CRF transcriptional repression through directly interacting with and deacetylating the GR co-chaperone FKBP5 to induce its dissociation from the GR, ultimately downregulating CRF. Together, this study unravels an important cellular and molecular mechanism highlighting an anxiolytic role for SIRT1 in the mouse BNST, which may open up new therapeutic avenues for treating stress-related anxiety disorders.

7.
Neurobiol Dis ; 183: 106191, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290577

RESUMO

The mood disorders major depressive disorder (MDD) and bipolar disorder (BD) are highly prevalent worldwide. Women are more vulnerable to these psychopathologies than men. The bed nucleus of the stria terminalis (BNST), the amygdala, and the hypothalamus are the crucial interconnected structures involved in the stress response. In mood disorders, stress systems in the brain are put into a higher gear. The BNST is implicated in mood, anxiety, and depression. The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is highly abundant in the central BNST (cBNST). In this study, we investigated alterations in PACAP in the cBNST of patients with mood disorders. Immunohistochemical (IHC) staining of PACAP and in situ hybridization (ISH) of PACAP mRNA were performed on the cBNST of post-mortem human brain samples. Quantitative IHC revealed elevated PACAP levels in the cBNST in both mood disorders, MDD and BD, but only in men, not in women. The PACAP ISH was negative, indicating that PACAP is not produced in the cBNST. The results support the possibility that PACAP innervation of the cBNST plays a role in mood disorder pathophysiology in men.


Assuntos
Transtorno Depressivo Maior , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Núcleos Septais , Feminino , Humanos , Masculino , Transtornos do Humor , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico
8.
Front Behav Neurosci ; 16: 903782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983475

RESUMO

The sexually dimorphic bed nucleus of the stria terminalis (BNST) is comprised of several distinct regions, some of which act as a hub for stress-induced changes in neural circuitry and behavior. In rodents, the anterodorsal BNST is especially affected by chronic exposure to stress, which results in alterations to the corticotropin-releasing factor (CRF)-signaling pathway, including CRF receptors and upstream regulators. Stress increases cellular excitability in BNST CRF+ neurons by potentiating miniature excitatory postsynaptic current (mEPSC) amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential). Rodent anterodorsal and anterolateral BNST neurons are also critical regulators of behavior, including avoidance of aversive contexts and fear learning (especially that of sustained threats). These rodent behaviors are historically associated with anxiety. Furthermore, BNST is implicated in stress-related mood disorders, including anxiety and Post-Traumatic Stress Disorders in humans, and may be linked to sex differences found in mood disorders.

9.
Biol Psychiatry ; 92(12): 952-963, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977861

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors such as fluoxetine have a limited treatment efficacy. The mechanism by which some patients respond to fluoxetine while others do not remains poorly understood, limiting treatment effectiveness. We have found the opioid system to be involved in the responsiveness to fluoxetine treatment in a mouse model for anxiety- and depressive-like behavior. METHODS: We analyzed gene expression changes in the dentate gyrus of mice chronically treated with corticosterone and fluoxetine. After identifying a subset of genes of interest, we studied their expression patterns in relation to treatment responsiveness. We further characterized their expression through in situ hybridization and the analysis of a single-cell RNA sequencing dataset. Finally, we behaviorally tested mu and delta opioid receptor knockout mice in the novelty suppressed feeding test and the forced swim test after chronic corticosterone and fluoxetine treatment. RESULTS: Chronic fluoxetine treatment upregulates proenkephalin expression in the dentate gyrus, and this upregulation is associated with treatment responsiveness. The expression of several of the most significantly upregulated genes, including proenkephalin, is localized to an anatomically and transcriptionally specialized subgroup of mature granule cells in the dentate gyrus. We have also found that the delta opioid receptor contributes to some, but not all, of the behavioral effects of fluoxetine. CONCLUSIONS: These data indicate that the opioid system is involved in the antidepressant effects of fluoxetine, and this effect may be mediated through the upregulation of proenkephalin in a subpopulation of mature granule cells.


Assuntos
Analgésicos Opioides , Fluoxetina , Camundongos , Animais , Fluoxetina/farmacologia , Analgésicos Opioides/farmacologia , Corticosterona , Receptores Opioides delta/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Camundongos Knockout
10.
Neurobiol Aging ; 118: 106-107, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914472

RESUMO

One potential therapeutic strategy for Alzheimer disease (AD) is to promote degradation of amyloid beta (Aß) and we previously demonstrated that the lysosomal protease tripeptidyl peptidase 1 (TPP1) can degrade Aß fibrils in vitro. In this study, we tested the hypothesis that increasing levels of TPP1 might promote degradation of Aß under physiological conditions, slowing or preventing its accumulation in the brain with subsequent therapeutic benefits. We used 2 approaches to increase TPP1 activity in the brain of J20 mice, an AD model that accumulates Aß and exhibits cognitive defects: transgenic overexpression of TPP1 in the brain and a pharmacological approach employing administration of recombinant TPP1. While we clearly observed the expected AD phenotype of the J20 mice based on pathology and measurement of behavioral and cognitive defects, we found that elevation of TPP1 activity by either experimental approach failed to have any measurable beneficial effect on disease phenotype.


Assuntos
Doença de Alzheimer , Tripeptidil-Peptidase 1 , Doença de Alzheimer/patologia , Aminopeptidases/genética , Aminopeptidases/metabolismo , Aminopeptidases/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Serina Proteases/genética , Serina Proteases/metabolismo , Serina Proteases/farmacologia
11.
Behav Brain Res ; 413: 113466, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271036

RESUMO

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by impairments in social interaction, cognition, and communication, as well as the presence of repetitive or stereotyped behaviors and interests. ASD is most often studied as a neurodevelopmental disease, but it is a lifelong disorder. Adults with ASD experience more stressful life events and greater perceived stress, and frequently have comorbid mood disorders such as anxiety and depression. It remains unclear whether adult exposure to chronic stress can exacerbate the behavioral and neurodevelopmental phenotypes associated with ASD. To address this issue, we first investigated whether adult male and female Engrailed-2 deficient (En2-KO, En2-/-) mice, which display behavioral disturbances in avoidance tasks and dysregulated monoaminergic neurotransmitter levels, also display impairments in instrumental behaviors associated with motivation, such as the progressive ratio task. We then exposed adult En2-KO mice to chronic environmental stress (CSDS, chronic social defeat stress), to determine if stress exacerbated the behavioral and neuroanatomical effects of En2 deletion. En2-/- mice showed impaired instrumental acquisition and significantly lower breakpoints in a progressive ratio test, demonstrating En2 deficiency decreases motivation to exert effort for reward. Furthermore, adult CSDS exposure increased avoidance behaviors in En2-KO mice. Interestingly, adult CSDS exposure also exacerbated the deleterious effects of En2 deficiency on forebrain-projecting monoaminergic fibers. Our findings thus suggest that adult exposure to stress may exacerbate behavioral and neuroanatomical phenotypes associated with developmental effects of genetic En2 deficiency.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Interação Gene-Ambiente , Motivação/fisiologia , Proteínas do Tecido Nervoso/deficiência , Estresse Psicológico/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio , Masculino , Camundongos
12.
Handb Clin Neurol ; 179: 403-418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225978

RESUMO

The bed nucleus of the stria terminalis (BNST) is a medial basal forebrain structure that modulates the hypothalamo-pituitary-adrenal (HPA) axis. The heterogeneous subnuclei of the BNST integrate inputs from mood and reward-related areas and send direct inhibitory projections to the hypothalamus. The connections between the BNST and hypothalamus are conserved across species, promote activation of the HPA axis, and can increase avoidance of aversive environments, which is historically associated with anxiety behaviors. However, BNST-hypothalamus circuitry is also implicated in motivated behaviors, drug seeking, feeding, and sexual behavior. These complex and diverse roles, as well its sexual dimorphism, indicate that the BNST-hypothalamus circuitry is an essential component of the neural circuitry that may underlie various psychiatric diseases, ranging from anorexia to anxiety to addiction. The following review is a cross-species exploration of BNST-hypothalamus circuitry. First, we describe the BNST subnuclei, microcircuitry and complex reciprocal connections with the hypothalamus. We will then discuss the behavioral functions of BNST-hypothalamus circuitry, including valence surveillance, addiction, feeding, and social behavior. Finally, we will address sex differences in morphology and function of the BNST and hypothalamus.


Assuntos
Núcleos Septais , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Hipotálamo , Masculino , Sistema Hipófise-Suprarrenal , Comportamento Social
13.
Front Behav Neurosci ; 15: 643272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716685

RESUMO

The basolateral amygdala (BLA) is critical for reward behaviors via a projection to the nucleus accumbens (NAc). Specifically, BLA-NAc projections are involved in reinforcement learning, reward-seeking, sustained instrumental responding, and risk behaviors. However, it remains unclear whether chronic stress interacts with BLA-NAc projection neurons to result in maladaptive behaviors. Here we take a chemogenetic, projection-specific approach to clarify how NAc-projecting BLA neurons affect avoidance, reward, and feeding behaviors in male mice. Then, we examine whether chemogenetic activation of NAc-projecting BLA neurons attenuates the maladaptive effects of chronic corticosterone (CORT) administration on these behaviors. CORT mimics the behavioral and neural effects of chronic stress exposure. We found a nuanced role of BLA-NAc neurons in mediating reward behaviors. Surprisingly, activation of BLA-NAc projections rescues CORT-induced deficits in the novelty suppressed feeding, a behavior typically associated with avoidance. Activation of BLA-NAc neurons also increases instrumental reward-seeking without affecting free-feeding in chronic CORT mice. Taken together, these data suggest that NAc-projecting BLA neurons are involved in chronic CORT-induced maladaptive reward and motivation behaviors.

14.
Transl Psychiatry ; 11(1): 125, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589585

RESUMO

Reward and motivation deficits are prominent symptoms in many mood disorders, including depression. Similar reward and effort-related choice behavioral tasks can be used to study aspects of motivation in both rodents and humans. Chronic stress can precipitate mood disorders in humans and maladaptive reward and motivation behaviors in male rodents. However, while depression is more prevalent in women, there is relatively little known about whether chronic stress elicits maladaptive behaviors in female rodents in effort-related motivated tasks and whether there are any behavioral sex differences. Chronic nondiscriminatory social defeat stress (CNSDS) is a variation of chronic social defeat stress that is effective in both male and female mice. We hypothesized that CNSDS would reduce effort-related motivated and reward behaviors, including reducing sensitivity to a devalued outcome, reducing breakpoint in progressive ratio, and shifting effort-related choice behavior. Separate cohorts of adult male and female C57BL/6 J mice were divided into Control or CNSDS groups, exposed to the 10-day CNSDS paradigm, and then trained and tested in instrumental reward or effort-related behaviors. CNSDS reduced motivation to lever press in progressive ratio and shifted effort-related choice behavior from a high reward to a more easily attainable low reward in both sexes. CNSDS caused more nuanced impairments in outcome devaluation. Taken together, CNSDS induces maladaptive shifts in effort-related choice and reduces motivated lever pressing in both sexes.


Assuntos
Comportamento de Escolha , Derrota Social , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motivação , Recompensa
15.
Transl Psychiatry ; 11(1): 7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414389

RESUMO

Antidepressants that target monoaminergic systems, such as selective serotonin reuptake inhibitors (SSRIs), are widely used to treat neuropsychiatric disorders including major depressive disorder, several anxiety disorders, and obsessive-compulsive disorder. However, these treatments are not ideal because only a subset of patients achieve remission. The reasons why some individuals remit to antidepressant treatments while others do not are unknown. Here, we developed a paradigm to assess antidepressant treatment resistance in mice. Exposure of male C57BL/6J mice to either chronic corticosterone administration or chronic social defeat stress induces maladaptive affective behaviors. Subsequent chronic treatment with the SSRI fluoxetine reverses these maladaptive affective behavioral changes in some, but not all, of the mice, permitting stratification into persistent responders and non-responders to fluoxetine. We found several differences in expression of Activin signaling-related genes between responders and non-responders in the dentate gyrus (DG), a region that is critical for the beneficial behavioral effects of fluoxetine. Enhancement of Activin signaling in the DG converted behavioral non-responders into responders to fluoxetine treatment more effectively than commonly used second-line antidepressant treatments, while inhibition of Activin signaling in the DG converted responders into non-responders. Taken together, these results demonstrate that the behavioral response to fluoxetine can be bidirectionally modified via targeted manipulations of the DG and suggest that molecular- and neural circuit-based modulations of DG may provide a new therapeutic avenue for more effective antidepressant treatments.


Assuntos
Transtorno Depressivo Maior , Ativinas , Animais , Antidepressivos , Giro Denteado , Fluoxetina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
16.
Neurobiol Stress ; 13: 100257, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344712

RESUMO

Depression is a complex psychiatric disorder that is a major burden on society, with only ~33% of depressed patients attaining remission upon initial monotherapy with a selective serotonin reuptake inhibitor (SSRI). In preclinical studies using rodents, chronic stress paradigms, such as chronic corticosterone and social instability stress, are used to induce avoidance behaviors associated with negative affective states. Chronic fluoxetine (FLX; an SSRI) treatment reverses these chronic stress-induced behavioral changes in some, but not all mice, permitting stratification of mice into behavioral responders and non-responders to FLX. We previously reported that 5-HT1A receptors, which are Gi-coupled inhibitory receptors, on mature granule cells (GCs) in the dentate gyrus (DG) are necessary and sufficient for the behavioral, neurogenic, and neuroendocrine response to chronic SSRI treatment. Since inhibition of mature DG GCs through cell autonomous Gi-coupled receptors is critical for mounting an antidepressant response, we assessed the relationship between behavioral response to FLX and DG GC activation in FLX responders, non-responders, and stress controls in both male and female mice. Intriguingly, using disparate stress paradigms, we found that male and female behavioral FLX responders show decreased DG GC activation (as measured by cFos immunostaining) relative to non-responders and stress controls. We then show in both sexes that chronic inhibition of ventral DG GCs (through usage of Gi-DREADDs) results in a decrease in maladaptive avoidance behaviors, while ventral DG GCs stimulation with Gq-DREADDs increases maladaptive behaviors. Finally, we were able to bidirectionally control the behavioral response to FLX through modulation of DG GCs. Chronic inhibition of ventral DG GCs with Gi-DREADDs converted FLX non-responders into responders, while activation of ventral DG GCs with Gq-DREADDs converted FLX responders into non-responders. This study illustrates ventral DG GC activity is a major modulator of the behavioral response to FLX in both male and female mice.

17.
Transl Psychiatry ; 10(1): 396, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177511

RESUMO

Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hormônio Liberador da Corticotropina , Núcleos Septais , Estresse Psicológico , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Privação Materna , Núcleos Septais/metabolismo
18.
J Vis Exp ; (162)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32865538

RESUMO

Mood disorders, including major depressive disorder, can be precipitated by chronic stress. The Y-maze barrier task is an effort-related choice test that measures motivation to expend effort and obtain reward. In mice, chronic stress exposure significantly impacts motivation to work for a higher value reward when a lesser value reward is freely available compared to unstressed mice. Here we describe the chronic corticosterone administration paradigm, which produces a shift in effortful responding in the Y-maze barrier task. In the Y-maze task, one arm contains 4 food pellets, while the other arm contains only 2 pellets. After mice learn to select the high reward arm, barriers with progressively increasing height are then introduced into the high reward arm over multiple test sessions. Unfortunately, most chronic stress paradigms (including corticosterone and social defeat) were developed in male mice and are less effective in female mice. Therefore, we also discuss chronic non-discriminatory social defeat stress (CNSDS), a stress paradigm we developed that is effective in both male and female mice. Repeating results with multiple distinct chronic stressors in male and female mice combined with increased usage of translationally relevant behavior tasks will help to advance the understanding of how chronic stress can precipitate mood disorders.


Assuntos
Comportamento Animal , Comportamento de Escolha , Comportamento Social , Estresse Psicológico , Animais , Doença Crônica , Corticosterona , Alimentos , Masculino , Camundongos Endogâmicos C57BL , Motivação , Recompensa
19.
Psychopharmacology (Berl) ; 237(7): 2103-2110, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32303779

RESUMO

RATIONALE: Effort-related choice tasks are used to study aspects of motivation in both rodents and humans (Der-Avakian and Pizzagalli Biol Psychiatry 83(11):932-939, 2018). Various dopaminergic manipulations and antidepressant treatments can shift responding to these tasks (Randall et al. Int J Neuropsychopharmacol 18(2), 2014; Yohn et al. Psychopharmacology 232(7):1313-1323, 2015). However, while chronic stress can precipitate mood disorders in humans, there is relatively little known about whether chronic stress elicits maladaptive behaviors in rodent effort-related choice tasks. OBJECTIVES: Chronic corticosterone (CORT) elicits an increase in negative maladaptive behaviors in male mice (David et al. Neuron 62(4):479-493, 2009; Gourley et al. Biol Psychiatry 64(10):884-890, 2008; Olausson et al. Psychopharmacology 225(3):569-577, 2013). We hypothesized that chronic CORT administration to male mice would reduce motivation for a higher effort, higher reward option, and shift responding to a less effortful, but a lesser reward. METHODS: Adult male C57BL/6J mice were administered either vehicle (n = 10) or CORT (n = 10) (~ 9.5 mg/kg/day) in their drinking water for 4 weeks, and then throughout all behavioral experiments (15 weeks total), and were tested in a Y-Maze barrier task and a fixed ratio concurrent (FR/chow) choice task. RESULTS: Chronic CORT reduced Y-maze HR arm choice when more effort was required to obtain the 4 food pellets (15-cm barrier in the high-reward (HR) arm, p < 0.001; 20-cm barrier in HR arm, p < 0.001) and shifted choice to the low reward (LR) arm where only 2 pellets were available. Chronic CORT also reduced lever pressing for food pellets in FR30/chow sessions of the concurrent choice task (p = 0.009), without impacting lab chow consumed. CONCLUSIONS: Chronic stress induces maladaptive shifts in effort-related choice behavior in the Y-maze barrier task in male mice. Furthermore, males subjected to chronic CORT administration show reduced lever pressing in FR30/chow sessions where lab chow is concurrently available. These data demonstrate that chronic corticosterone reduces motivation to work for and obtain a highly rewarding reinforcer when a lesser reinforcer is concurrently available.


Assuntos
Comportamento de Escolha/efeitos dos fármacos , Corticosterona/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Motivação/efeitos dos fármacos , Recompensa , Animais , Comportamento de Escolha/fisiologia , Esquema de Medicação , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Motivação/fisiologia
20.
Neurotoxicol Teratol ; 79: 106884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289443

RESUMO

Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.


Assuntos
Ansiedade/induzido quimicamente , Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Disruptores Endócrinos/toxicidade , Exposição Ambiental , Fenóis/toxicidade , Estresse Psicológico/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Sistema Endócrino/efeitos dos fármacos , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...