Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 65(12): 3029-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24706719

RESUMO

Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed.


Assuntos
Ácido Abscísico/metabolismo , Citrus/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Transcriptoma , Citrus/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Árvores
2.
Plant Sci ; 198: 46-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23199686

RESUMO

Gibberellins (GAs) affect flowering in a species-dependent manner: in long-day and biennial plants they promote flowering, whereas in other plants, including fruit trees, they inhibit it. The mechanism by which GAs promote flowering in Arabidopsis is not fully understood, although there is increasing evidence that they may act through more than one pathway. In citrus, GA treatment during the flowering induction period reduces the number of flowers; the mechanism of flowering inhibition is not clear; the hormone may act directly in the bud to determine its fate toward vegetative growth, generate a mobile signal, or both. However, bud metabolic and regulatory pathways are expected to be altered upon GA treatment. We investigated the effect of GA treatments on global gene expression in the bud during the induction period, and on the expression of key flowering genes. Overall, about 2000 unigenes showed altered expression, with about 300 showing at least a two-fold change. Changes in flavonoids and trehalose metabolic pathways were validated, and among other altered pathways, such as cell-wall components, were discussed in light of GA's inhibition of flowering. Among flowering-control genes, GA treatment resulted in reduced mRNA levels of FT, AP1 and a few flower-organ-identity genes. mRNA levels of FLC-like and SOC1 were not altered by the treatment, whereas LEAFY mRNA was induced in GA-treated buds. Surprisingly, FT expression was higher in buds than leaves. Overall, our results shed light on changes taking place in the bud during flowering induction in response to GA treatment.


Assuntos
Citrus/genética , Citrus/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Citrus/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Fotoperíodo , Transdução de Sinais
3.
PLoS One ; 7(10): e46930, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071667

RESUMO

Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an 'AB signal' is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate-flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds.


Assuntos
Citrus/genética , Flores/genética , Frutas/genética , Perfilação da Expressão Gênica , Vias Biossintéticas , Citrus/crescimento & desenvolvimento , Citrus/metabolismo , Análise por Conglomerados , Flavonoides/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Tempo , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...