Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 7948-7952, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912704

RESUMO

We demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers. The number of electrons passing the barrier depends exponentially on the transport length with a mean-free path of 200-260 nm, and the electrons reach the ballistic transport regime for the shortest devices with 70% of the electrons flying freely through the base electrode and the barrier reflections limiting the transport to the collector.

2.
Nanotechnology ; 35(25)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38484394

RESUMO

We have investigated the optical properties of heterostructured InGaN platelets aiming at red emission, intended for use as nano-scaled light-emitting diodes. The focus is on the presence of non-radiative emission in the form of dark line defects. We have performed the study using hyperspectral cathodoluminescence imaging. The platelets were grown on a template consisting of InGaN pyramids, flattened by chemical mechanical polishing. These templates are defect free, whereas the dark line defects are introduced in the lower barrier and tend to propagate through all the subsequent layers, as revealed by the imaging of different layers in the structure. We conclude that the dark line defects are caused by stacking mismatch boundaries introduced by multiple seeding and step bunching at the edges of the as-polished, dome shaped templates. To avoid these defects, we suggest that the starting material must be flat rather than dome shaped.

3.
ACS Appl Mater Interfaces ; 15(1): 1619-1628, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574641

RESUMO

InP quantum dots (QDs) are the most competitive in terms of environmentally friendly QDs. However, the synthesis of InP QDs requires breakthroughs in low-cost and safe phosphorus precursors such as tri(dimethylamino)phosphine [(DMA)3P]. It is found that even if the oxygen is completely avoided, there are still oxidation state defects at the core/shell interface of InP QDs. Herein, the record-breaking (DMA)3P-based red InP QDs were synthesized with the assist of HF processing to eliminate the InPOx defect and improve the fluorescence efficiency. The maximum photoluminescence quantum yield was 97.7%, which is the highest of the red InP QDs synthesized by the aminophosphine. The external quantum efficiency and brightness of the QD light-emitting diode device are also improved accordingly from 0.6% and 1276 cd·m-2 to 3.5% and 2355 cd·m-2, respectively.

4.
ACS Appl Energy Mater ; 5(6): 7728-7734, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35783345

RESUMO

Using the excess energy of charge carriers excited above the band edge (hot carriers) could pave the way for optoelectronic devices, such as photovoltaics exceeding the Shockley-Queisser limit or ultrafast photodetectors. Semiconducting nanowires show promise as a platform for hot-carrier extraction. Proof of principle photovoltaic devices have already been realized based on InAs nanowires, using epitaxially defined InP segments as energy filters that selectively transmit hot electrons. However, it is not yet fully understood how charge-carrier separation, relaxation, and recombination depend on device design and on the location of optical excitation. Here, we introduce the use of an optical-beam-induced current (OBIC) characterization method, employing a laser beam focused close to the diffraction limit and a high precision piezo stage, to study the optoelectric performance of the nanowire device as a function of the position of excitation. The photocurrent response agrees well with modeling based on hot-electron extraction across the InP segment via diffusion. We demonstrate that the device is capable of producing power and estimate the spatial region within which significant hot-electron extraction can take place to be on the order of 300 nm away from the barrier. When comparing to other experiments on similar nanowires, we find good qualitative agreement, confirming the interpretation of the device function, while the extracted diffusion length of hot electrons varies. Careful control of the excitation and device parameters will be important to reach the potentially high device performance theoretically available in these systems.

5.
Phys Rev Lett ; 128(20): 207001, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657870

RESUMO

The Josephson junction of a strong spin-orbit material under a magnetic field is a promising Majorana fermion candidate. Supercurrent enhancement by a magnetic field has been observed in the InAs nanowire Josephson junctions and assigned to a topological transition. In this work we observe a similar phenomenon but discuss the nontopological origin by considering the trapping of quasiparticles by vortices that penetrate the superconductor under a finite magnetic field. This assignment is supported by the observed hysteresis of the switching current when sweeping up and down the magnetic field. Our experiment shows the importance of quasiparticles in superconducting devices with a magnetic field, which can provide important insights for the design of qubits using superconductors.

6.
Nano Lett ; 22(2): 630-635, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35030004

RESUMO

The Wiedemann-Franz law states that the charge conductance and the electronic contribution to the heat conductance are proportional. This sets stringent constraints on efficiency bounds for thermoelectric applications, which seek a large charge conduction in response to a small heat flow. We present experiments based on a quantum dot formed inside a semiconducting InAs nanowire transistor, in which the heat conduction can be tuned significantly below the Wiedemann-Franz prediction. Comparison with scattering theory shows that this is caused by quantum confinement and the resulting energy-selective transport properties of the quantum dot. Our results open up perspectives for tailoring independently the heat and electrical conduction properties in semiconductor nanostructures.

7.
Nanotechnology ; 32(2): 025605, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32987376

RESUMO

Cost- and resource-efficient growth is necessary for many applications of semiconductor nanowires. We here present the design, operational details and theory behind Aerotaxy, a scalable alternative technology for producing quality crystalline nanowires at a remarkably high growth rate and throughput. Using size-controlled Au seed particles and organometallic precursors, Aerotaxy can produce nanowires with perfect crystallinity and controllable dimensions, and the method is suitable to meet industrial production requirements. In this report, we explain why Aerotaxy is an efficient method for fabricating semiconductor nanowires and explain the technical aspects of our custom-built Aerotaxy system. Investigations using SEM (scanning electron microscope), TEM (transmission electron microscope) and other characterization methods are used to support the claim that Aerotaxy is indeed a scalable method capable of producing nanowires with reproducible properties. We have investigated both binary and ternary III-V semiconductor material systems like GaAs and GaAsP. In addition, common aspects of Aerotaxy nanowires deduced from experimental observations are used to validate the Aerotaxy growth model, based on a computational flow dynamics (CFD) approach. We compare the experimental results with the model behaviour to better understand Aerotaxy growth.

8.
Small ; 16(30): e1907364, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32578387

RESUMO

III-nitrides are considered the material of choice for light-emitting diodes (LEDs) and lasers in the visible to ultraviolet spectral range. The development is hampered by lattice and thermal mismatch between the nitride layers and the growth substrate leading to high dislocation densities. In order to overcome the issue, efforts have gone into selected area growth of nanowires (NWs), using their small footprint in the substrate to grow virtually dislocation-free material. Their geometry is defined by six tall side-facets and a pointed tip which limits the design of optoelectronic devices. Growth of dislocation-free and atomically smooth 3D hexagonal GaN micro-prisms with a flat, micrometer-sized top-surface is presented. These self-forming structures are suitable for optical devices such as low-loss optical cavities for high-efficiency LEDs. The structures are made by annealing GaN NWs with a thick radial shell, reforming them into hexagonal flat-top prisms with six equivalents either m- or s-facets depending on the initial heights of the top pyramid and m-facets of the NWs. This shape is kinetically controlled and the reformation can be explained with a phenomenological model based on Wulff construction that have been developed. It is expected that the results will inspire further research into micron-sized III-nitride-based devices.

9.
Nanotechnology ; 31(39): 394004, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32526708

RESUMO

The separation of hot carriers in semiconductors is of interest for applications such as thermovoltaic photodetection and third-generation photovoltaics. Semiconductor nanowires offer several potential advantages for effective hot-carrier separation such as: a high degree of control and flexibility in heterostructure-based band engineering, increased hot-carrier temperatures compared to bulk, and a geometry well suited for local control of light absorption. Indeed, InAs nanowires with a short InP energy barrier have been observed to produce electric power under global illumination, with an open-circuit voltage exceeding the Shockley-Queisser limit. To understand this behaviour in more detail, it is necessary to establish control over the precise location of electron-hole pair-generation in the nanowire. In this work we perform electron-beam induced current measurements with high spatial resolution, and demonstrate the role of the InP barrier in extracting energetic electrons.We interprete the results in terms of hot-carrier separation, and extract estimates of the hot carriers' mean free path.

10.
Nano Lett ; 20(6): 4064-4072, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32347731

RESUMO

Nanowires bring new possibilities to the field of hot-carrier photovoltaics by providing flexibility in combining materials for band engineering and using nanophotonic effects to control light absorption. Previously, an open-circuit voltage beyond the Shockley-Queisser limit was demonstrated in hot-carrier devices based on InAs-InP-InAs nanowire heterostructures. However, in these first experiments, the location of light absorption, and therefore the precise mechanism of hot-carrier extraction, was uncontrolled. In this Letter, we combine plasmonic nanoantennas with InAs-InP-InAs nanowire devices to enhance light absorption within a subwavelength region near an InP energy barrier that serves as an energy filter. From photon-energy- and irradiance-dependent photocurrent and photovoltage measurements, we find that photocurrent generation is dominated by internal photoemission of nonthermalized hot electrons when the photoexcited electron energy is above the barrier and by photothermionic emission when the energy is below the barrier. We estimate that an internal quantum efficiency up to 0.5-1.2% is achieved. Insights from this study provide guidelines to improve internal quantum efficiencies based on nanowire heterostructures.

11.
ACS Appl Mater Interfaces ; 12(15): 17845-17851, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32207292

RESUMO

In this work, arrays of predominantly relaxed InGaN platelets with indium contents of up to 18%, free from dislocations and offering a smooth top c-plane, are presented. The InGaN platelets are grown by metal-organic vapor phase epitaxy on a dome-like InGaN surface formed by chemical mechanical polishing of InGaN pyramids defined by 6 equivalent {101̅1} planes. The dome-like surface is flattened during growth, through the formation of bunched steps, which are terminated when reaching the inclined {101̅1} planes. The continued growth takes place on the flattened top c-plane with single bilayer surface steps initiated at the six corners between the c-plane and the inclined {101̅1} planes, leading to the formation of high-quality InGaN layers. The top c-plane of the as-formed InGaN platelets can be used as a high-quality template for red micro light-emitting diodes.

12.
Nanotechnology ; 31(20): 204002, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32106108

RESUMO

We report on the use of a sacrificial AlAs segment to enable substrate reuse for nanowire synthesis. A silicon nitride template was deposited on a p-type GaAs substrate. Then a pattern was transferred to the substrate by nanoimprint lithography and reactive ion etching. Thermal evaporation was used to define Au seed particles. Metalorganic vapour phase epitaxy was used to grow AlAs-GaAs NWs in the vapour-liquid-solid growth mode. The yield of synthesised nanowires, compared to the number expected from the patterned template, was more than 80%. After growth, the nanowires were embedded in a polymer and mechanically removed from the parent substrate. The parent substrate was then immersed in an HCl:H2O (1:1) mixture to dissolve the remaining stub of the sacrificial AlAs segment. The pattern fidelity was preserved after peeling off the nanowires and cleaning, and the semiconductor surface was flat and ready for reuse. Au seed particles were then deposited on the substrate by use of pulse electrodeposition, which was selective to the openings in the growth template, and then nanowires were regrown. The yield of regrowth was less optimal compared to the first growth but the pattern was preserved. Our results show a promising approach to reduce the final cost of III-V nanowire based solar cells.

13.
Nanoscale ; 12(2): 888-894, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31833520

RESUMO

We report on the synthesis of vertical InP nanowire arrays on (001) InP and Si substrates using template-assisted vapour-liquid-solid growth. A thick silicon oxide layer was first deposited on the substrates. The samples were then patterned by electron beam lithography and deep dry etching through the oxide layer down to the substrate surface. Gold seed particles were subsequently deposited in the holes of the pattern by the use of pulse electrodeposition. The subsequent growth of nanowires by the vapour-liquid-solid method was guided towards the [001] direction by the patterned oxide template, and displayed a high growth yield with respect to the array of holes in the template. In order to confirm the versatility and robustness of the process, we have also demonstrated guided growth of InP nanowire p-n junctions and InP/InAs/InP nanowire heterostructures on (001) InP substrates. Our results show a promising route to monolithically integrate III-V nanowire heterostructure devices with commercially viable (001) silicon platforms.

14.
Nano Lett ; 19(12): 8424-8430, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31721593

RESUMO

High-performance photodetectors operating in the near-infrared (0.75-1.4 µm) and short-wave infrared (1.4-3.0 µm) portion of the electromagnetic spectrum are key components in many optical systems. Here, we report on a combined experimental and theoretical study of square millimeter array infrared photodetectors comprising 3 million n+-i-n+ InP nanowires grown by MOVPE from periodically ordered Au seed particles. The nominal i-segment, comprising 20 InAs0.40P0.60 quantum discs, was grown by use of an optimized Zn doping to compensate the nonintentional n-doping. The photodetectors exhibit bias- and power-dependent responsivities reaching record-high values of 250 A/W at 980 nm/20 nW and 990 A/W at 532 nm/60 nW, both at 3.5 V bias. Moreover, due to the embedded quantum discs, the photoresponse covers a broad spectral range from about 0.70 to 2.5 eV, in effect outperforming conventional single InGaAs detectors and dual Si/Ge detectors. The high responsivity, and related gain, results from a novel proposed photogating mechanism, induced by the complex charge carrier dynamics involving optical excitation and recombination in the quantum discs and interface traps, which reduces the electron transport barrier between the highly doped n+ contact and the i-segment. The experimental results obtained are in perfect agreement with the proposed theoretical model and represent a significant step forward toward understanding gain in nanoscale photodetectors and realization of commercially viable broadband photon detectors with ultrahigh gain.

15.
Sci Adv ; 5(10): eaaw2194, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620554

RESUMO

Cooper pair splitting (CPS) can induce nonlocal correlation between two normal conductors that are coupled to a superconductor. CPS in a double one-dimensional electron gas is an appropriate platform for extracting a large number of entangled electron pairs and is one of the key ingredients for engineering Majorana fermions with no magnetic field. In this study, we investigated CPS by using a Josephson junction of a gate-tunable ballistic InAs double nanowire. The measured switching current into the two nanowires is significantly larger than the sum of the switching current into the respective nanowires, indicating that interwire superconductivity is dominant compared with intrawire superconductivity. From its dependence on the number of propagating channels in the nanowires, the observed CPS is assigned to one-dimensional electron-electron interaction. Our results will pave the way for the utilization of one-dimensional electron-electron interaction to reveal the physics of high-efficiency CPS and to engineer Majorana fermions in double nanowire systems via CPS.

16.
ACS Nano ; 13(11): 12860-12869, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31626535

RESUMO

Space power systems require photovoltaics that are lightweight, efficient, reliable, and capable of operating for years or decades in space environment. Current solar panels use planar multijunction, III-V based solar cells with very high efficiency, but their specific power (power to weight ratio) is limited by the added mass of radiation shielding (e.g., coverglass) required to protect the cells from the high-energy particle radiation that occurs in space. Here, we demonstrate that III-V nanowire-array solar cells have dramatically superior radiation performance relative to planar solar cell designs and show this for multiple cell geometries and materials, including GaAs and InP. Nanowire cells exhibit damage thresholds ranging from ∼10-40 times higher than planar control solar cells when subjected to irradiation by 100-350 keV protons and 1 MeV electrons. Using Monte Carlo simulations, we show that this improvement is due in part to a reduction in the displacement density within the wires arising from their nanoscale dimensions. Radiation tolerance, combined with the efficient optical absorption and the improving performance of nanowire photovoltaics, indicates that nanowire arrays could provide a pathway to realize high-specific-power, substrate-free, III-V space solar cells with substantially reduced shielding requirements. More broadly, the exceptional reduction in radiation damage suggests that nanowire architectures may be useful in improving the radiation tolerance of other electronic and optoelectronic devices.

17.
Nanotechnology ; 30(50): 505703, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31480023

RESUMO

InAs x P1-x nanowires are promising building blocks for future optoelectronic devices and nanoelectronics. Their structure may vary from nanowire to nanowire, which may influence their average optoelectronic properties. Therefore, it is highly important for their applications to know the average properties of an ensemble of the nanowires. Structural properties of the InAs x P1-x -InP core-shell nanowires were investigated using the coplanar x-ray diffraction performed at a synchrotron facility. Studies of series of symmetric and asymmetric x-ray Bragg reflections allowed us to determine the 26% ± 3% of As chemical composition in the InAs x P1-x core, core-shell relaxation, and the average tilt of the nanowires with respect to the substrate normal. Based on the x-ray diffraction, scanning, and transmission electron microscopy measurements, a model of the core-shell relaxation was proposed. Partial relaxation of the core was attributed to misfit dislocations formed at the core-shell interface and their linear density was estimated to be 3.3 ± 0.3 × 104 cm-1.

18.
Chem Rev ; 119(15): 9170-9220, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31385696

RESUMO

Low-dimensional semiconductor materials structures, where nanowires are needle-like one-dimensional examples, have developed into one of the most intensely studied fields of science and technology. The subarea described in this review is compound semiconductor nanowires, with the materials covered limited to III-V materials (like GaAs, InAs, GaP, InP,...) and III-nitride materials (GaN, InGaN, AlGaN,...). We review the way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires, and we combine this perspective with one of how the different families of nanowires can contribute to applications. One reason for the very intense research in this field is motivated by what they can offer to main-stream semiconductors, by which ultrahigh performing electronic (e.g., transistors) and photonic (e.g., photovoltaics, photodetectors or LEDs) technologies can be merged with silicon and CMOS. Other important aspects, also covered in the review, deals with synthesis methods that can lead to dramatic reduction of cost of fabrication and opportunities for up-scaling to mass production methods.

19.
Nano Lett ; 19(5): 2832-2839, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938533

RESUMO

In this work, we present a method to synthesize arrays of hexagonal InGaN submicrometer platelets with a top c-plane area having an extension of a few hundred nanometers by selective area metal-organic vapor-phase epitaxy. The InGaN platelets were made by in situ annealing of InGaN pyramids, whereby InGaN from the pyramid apex was thermally etched away, leaving a c-plane surface, while the inclined {101̅1} planes of the pyramids were intact. The as-formed c-planes, which are rough with islands of a few tens of nanometers, can be flattened with InGaN regrowth, showing single bilayer steps and high-quality optical properties (full width at half-maximum of photoluminescence at room temperature: 107 meV for In0.09Ga0.91N and 151 meV for In0.18Ga0.82N). Such platelets offer surfaces having relaxed lattice constants, thus enabling shifting the quantum well emission from blue (as when grown on GaN) to green and red. For single InGaN quantum wells grown on the c-plane of such InGaN platelets, a sharp interface between the quantum well and the barriers was observed. The emission energy from the quantum well, grown under the same conditions, was shifted from 2.17 eV on In0.09Ga0.91N platelets to 1.95 eV on In0.18Ga0.82N platelets as a result of a thicker quantum well and a reduced indium pulling effect on In0.18Ga0.82N platelets. On the basis of this method, prototype light-emitting diodes were demonstrated with green emission on In0.09Ga0.91N platelets and red emission on In0.18Ga0.82N platelets.

20.
Small ; : e1801285, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30003665

RESUMO

For the purpose of functionalizing III-V semiconductor nanowires using n-doping, Sn-doped GaAs zincblende nanowires are produced, using the growth method of Aerotaxy. The growth conditions used are such that Ga droplets, formed on the nanowire surface, increase in number and concentrations when the Sn-precursor concentration is increased. Droplet-covered wires grown with varying Sn concentrations are analyzed by transmission electron microscopy and electron tomography, which together establish the positioning of the droplets to be preferentially on {-111}B facets. These facets have the same polarity as the main wire growth direction, [-1-1-1]B. This means that the generated Ga particles can form nucleation sites for possible nanowire branch growth. The concept of azimuthal mapping is introduced as a useful tool for nanowire surface visualization and evaluation. It is demonstrated here that electron tomography is useful in revealing both the surface and internal morphologies of the nanowires, opening up for applications in the analysis of more structurally complicated systems like radially asymmetrical nanowires. The analysis also gives a further understanding of the limits of the dopants which can be used for Aerotaxy nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...