Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 22(2): 519-538, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34398515

RESUMO

Advances in high-throughput sequencing (HTS) are revolutionizing monitoring in marine environments by enabling rapid, accurate and holistic detection of species within complex biological samples. Research institutions worldwide increasingly employ HTS methods for biodiversity assessments. However, variance in laboratory procedures, analytical workflows and bioinformatic pipelines impede the transferability and comparability of results across research groups. An international experiment was conducted to assess the consistency of metabarcoding results derived from identical samples and primer sets using varying laboratory procedures. Homogenized biofouling samples collected from four coastal locations (Australia, Canada, New Zealand and the USA) were distributed to 12 independent laboratories. Participants were asked to follow one of two HTS library preparation workflows. While DNA extraction, primers and bioinformatic analyses were purposefully standardized to allow comparison, many other technical variables were allowed to vary among laboratories (amplification protocols, type of instrument used, etc.). Despite substantial variation observed in raw results, the primary signal in the data was consistent, with the samples grouping strongly by geographical origin for all data sets. Simple post hoc data clean-up by removing low-quality samples gave the best improvement in sample classification for nuclear 18S rRNA gene data, with an overall 92.81% correct group attribution. For mitochondrial COI gene data, the best classification result (95.58%) was achieved after correction for contamination errors. The identified critical methodological factors that introduced the greatest variability (preservation buffer, sample defrosting, template concentration, DNA polymerase, PCR enhancer) should be of great assistance in standardizing future biodiversity studies using metabarcoding.


Assuntos
Código de Barras de DNA Taxonômico , Laboratórios , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 18S
2.
Water Res ; 194: 116954, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667950

RESUMO

Since the start of synthetic fertilizer production more than a hundred years ago, the coastal ocean has been exposed to increasing nutrient loading, which has led to eutrophication and extensive algal blooms. Such hypereutrophic waters might harbor anaerobic nitrogen (N) cycling processes due to low-oxygen microniches associated with abundant organic particles, but studies on nitrate reduction in coastal pelagic environments are scarce. Here, we report on 15N isotope-labeling experiments, metagenome, and RT-qPCR data from a large hypereutrophic lagoon indicating that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification were active processes, even though the bulk water was fully oxygenated (> 224 µM O2). DNRA in the bottom water corresponded to 83% of whole-ecosystem DNRA (water + sediment), while denitrification was predominant in the sediment. Microbial taxa important for DNRA according to the metagenomic data were dominated by Bacteroidetes (genus Parabacteroides) and Proteobacteria (genus Wolinella), while denitrification was mainly associated with proteobacterial genera Pseudomonas, Achromobacter, and Brucella. The metagenomic and microscopy data suggest that these anaerobic processes were likely occurring in low-oxygen microniches related to extensive growth of filamentous cyanobacteria, including diazotrophic Dolichospermum and non-diazotrophic Planktothrix. By summing the total nitrate fluxes through DNRA and denitrification, it results that DNRA retains approximately one fifth (19%) of the fixed N that goes through the nitrate pool. This is noteworthy as DNRA represents thus a very important recycling mechanism for fixed N, which sustains algal proliferation and leads to further enhancement of eutrophication in these endangered ecosystems.


Assuntos
Compostos de Amônio , Desnitrificação , Ecossistema , Nitratos , Nitrogênio , Óxidos de Nitrogênio
3.
Microb Ecol ; 81(1): 36-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803362

RESUMO

Seasonally nitrogen-limited and phosphorus-replete temperate coastal waters generally host dense and diverse diazotrophic communities. Despite numerous studies in marine systems, little is known about diazotrophs and their functioning in oligohaline estuarine environments. Here we applied a combination of nifH transcript and metagenomic shotgun sequencing approaches to investigate temporal shifts in taxonomic composition and nifH activity of size-fractionated diazotrophic communities in a shallow and mostly freshwater coastal lagoon. Patterns in active nifH phylotypes exhibited a clear seasonal succession, which reflected their different tolerances to temperature change and nitrogen (N) availability. Thus, in spring, heterotrophic diazotrophs (Proteobacteria) dominated the nifH phylotypes, while increasing water temperature and depletion of inorganic N fostered heterocystous Cyanobacteria in summer. Metagenomic data demonstrated four main N-cycling pathways and three of them with a clear seasonal pattern: denitrification (spring) → N2 fixation (summer) → assimilative NO3- reduction (fall), with NH4+ uptake into cells occurring across all seasons. Although a substantial denitrification signal was observed in spring, it could have originated from the re-suspended benthic rather than planktonic community. Our results contribute to a better understanding of the realized genetic potential of pelagic N2 fixation and its seasonal dynamics in oligohaline estuarine ecosystems, which are natural coastal biogeochemical reactors.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Água Doce/microbiologia , Ciclo do Nitrogênio/fisiologia , Fixação de Nitrogênio/fisiologia , DNA Ambiental/genética , Estuários , Processos Heterotróficos , Microbiota , Oxirredutases/genética , Filogenia , RNA/genética , Estações do Ano , Microbiologia da Água
4.
Sci Rep ; 10(1): 13966, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811860

RESUMO

Mangrove forests are among the most productive and diverse ecosystems on the planet, despite limited nitrogen (N) availability. Under such conditions, animal-microbe associations (holobionts) are often key to ecosystem functioning. Here, we investigated the role of fiddler crabs and their carapace-associated microbial biofilm as hotspots of microbial N transformations and sources of N within the mangrove ecosystem. 16S rRNA gene and metagenomic sequencing provided evidence of a microbial biofilm dominated by Cyanobacteria, Alphaproteobacteria, Actinobacteria, and Bacteroidota with a community encoding both aerobic and anaerobic pathways of the N cycle. Dinitrogen (N2) fixation was among the most commonly predicted process. Net N fluxes between the biofilm-covered crabs and the water and microbial N transformation rates in suspended biofilm slurries portray these holobionts as a net N2 sink, with N2 fixation exceeding N losses, and as a significant source of ammonium and dissolved organic N to the surrounding environment. N stable isotope natural abundances of fiddler crab carapace-associated biofilms were within the range expected for fixed N, further suggesting active microbial N2 fixation. These results extend our knowledge on the diversity of invertebrate-microbe associations, and provide a clear example of how animal microbiota can mediate a plethora of essential biogeochemical processes in mangrove ecosystems.


Assuntos
Braquiúros/metabolismo , Braquiúros/microbiologia , Fixação de Nitrogênio/fisiologia , Animais , Biofilmes/crescimento & desenvolvimento , Decápodes/metabolismo , Decápodes/microbiologia , Ecossistema , Microbiota/genética , Nitrogênio/metabolismo , Ciclo do Nitrogênio/genética , Ciclo do Nitrogênio/fisiologia , RNA Ribossômico 16S/genética , Áreas Alagadas
5.
Front Microbiol ; 11: 610269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542710

RESUMO

Bivalves are ubiquitous filter-feeders able to alter ecosystems functions. Their impact on nitrogen (N) cycling is commonly related to their filter-feeding activity, biodeposition, and excretion. A so far understudied impact is linked to the metabolism of the associated microbiome that together with the host constitute the mussel's holobiont. Here we investigated how colonies of the invasive zebra mussel (Dreissena polymorpha) alter benthic N cycling in the shallow water sediment of the largest European lagoon (the Curonian Lagoon). A set of incubations was conducted to quantify the holobiont's impact and to quantitatively compare it with the indirect influence of the mussel on sedimentary N transformations. Zebra mussels primarily enhanced the recycling of N to the water column by releasing mineralized algal biomass in the form of ammonium and by stimulating dissimilatory nitrate reduction to ammonium (DNRA). Notably, however, not only denitrification and DNRA, but also dinitrogen (N2) fixation was measured in association with the holobiont. The diazotrophic community of the holobiont diverged substantially from that of the water column, suggesting a unique niche for N2 fixation associated with the mussels. At the densities reported in the lagoon, mussel-associated N2 fixation may account for a substantial (and so far, overlooked) source of bioavailable N. Our findings contribute to improve our understanding on the ecosystem-level impact of zebra mussel, and potentially, of its ability to adapt to and colonize oligotrophic environments.

6.
Mar Pollut Bull ; 100(1): 53-59, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26422121

RESUMO

In this study, high-throughput sequencing (HTS) metabarcoding was applied for the surveillance of plankton communities within the southeastern (SE) Baltic Sea coastal zone. These results were compared with those from routine monitoring survey and morphological analyses. Four of five nonindigenous species found in the samples were identified exclusively by metabarcoding. All of them are considered as invasive in the Baltic Sea with reported impact on the ecosystem and biodiversity. This study indicates that, despite some current limitations, HTS metabarcoding can provide information on the presence of exotic species and advantageously complement conventional approaches, only requiring the same monitoring effort as before. Even in the currently immature status of HTS, this combination of HTS metabarcoding and observational records is recommended in the early detection of marine pests and delivery of the environmental status metrics of nonindigenous species.


Assuntos
Biodiversidade , Espécies Introduzidas , Zooplâncton/genética , Animais , Biologia Computacional , Conservação dos Recursos Naturais , DNA/química , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Oceanos e Mares , Federação Russa , Zooplâncton/classificação
7.
Mar Environ Res ; 112(Pt B): 64-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26174116

RESUMO

Detecting the presence of potential invasive species in ballast water is a priority for preventing their spread into new environments. Next generation sequencing technologies are being increasingly used for exploring and assessing biodiversity from environmental samples. Here we apply high throughput sequencing from DNA extracted from ballast water (BW) samples employing two different platforms, Ion Torrent and 454, and compare the putative species catalogues from the resulting Operational Taxonomic Units (OTU). Water samples were taken from the RV Polastern ballast tank in five different days between the second and the twentieth navigation day. Pronounced decrease of oxygen concentration and increase of temperature occurred in the BW during this time, coincident with a progressively higher proportion of unassigned OTU and short reads indicating DNA degradation. Discrepancy between platforms for species catalogues was consistent with previously published bias in AT-rich sequences for Ion Torrent platform. Some putative species detected from the two platforms increased in frequency during the Polarstern travel, which suggests they were alive and therefore tolerant to adverse conditions. OTU assigned to the highly invasive red alga Polysiphonia have been detected at low but increasing frequency from the two platforms. Although in this moment NGST could not replace current methods of sampling, sorting and individual taxonomic identification of BW biota, it has potential as an exploratory methodology especially for detecting scarce species.


Assuntos
Organismos Aquáticos/genética , Biodiversidade , Monitoramento Ambiental/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Espécies Introduzidas , Organismos Aquáticos/classificação , Dados de Sequência Molecular , Análise de Sequência de DNA
8.
Mar Pollut Bull ; 92(1-2): 25-34, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25627196

RESUMO

Transfer of organisms with ships' ballast water is recognized as a major pathway of non-indigenous species introduction and addressed in a few recent legislative initiatives. Among other they imply scientific and technical research and monitoring to be conducted in a efficient and reliable way. The recent development of DNA barcoding and metabarcoding technologies opens new opportunities for biodiversity and biosecurity surveillance. In the current study, the performance of metabarcoding approach was assessed in comparison to the conventional (visual) observations, during the en route experimental ballast water survey. Opportunities and limitations of the molecular method were identified from taxonomical datasets rendered by two molecular markers of different degree of universality - the universal cytochrome oxydase sub-unit I gene and a fragment of RuBisCO gene. The cost-efficacy and possible improvements of these methods are discussed for the further successful development and implementation of the approach in ballast water control and NIS surveillance.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Navios , Água/análise , Animais , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/genética , Espécies Introduzidas , Ribulose-Bifosfato Carboxilase/genética , Temperatura , Microbiologia da Água
9.
Fish Physiol Biochem ; 35(4): 649-59, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19247795

RESUMO

The genetic diversity and differentiation of sea trout were studied in three river basins in Lithuania: Akmena-Dane, Bartuva, and Nemunas. A total of 282 individuals were genotyped at eight microsatellite loci. A similar level of genetic diversity was found in all of the populations studied: mean allelic richness ranged from 3.64 to 5.03, and average expected heterozygosity ranged from 0.588 to 0.721. Significant genetic divergence was observed among the different river basins as well as between populations within the drainages. All pairwise F (ST) values were highly significant, ranging from 0.027 to 0.197. The analysis of molecular variance showed rather weak hierarchical population structuring within the Nemunas basin, which may be explained by extensive gene flow among different river basins or, alternatively, reflect the influence of artificial breeding. Information on genetic diversity and differentiation of the Lithuanian sea trout populations will be useful for future management decisions.


Assuntos
Evolução Molecular , Variação Genética , Genética Populacional , Truta/genética , Análise de Variância , Animais , Fluxo Gênico/genética , Frequência do Gene , Geografia , Lituânia , Repetições de Microssatélites/genética , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...