Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 23(2): 355-358, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36377254

RESUMO

Konopinski (2022) suggests that when averaging nucleotide diversity over a sequence, ignoring per-site sample size variation (i.e., using an unweighted mean) offers an improvement in precision (lower variation) and accuracy (reduced bias). Here, I argue that preserving uncertainty due to variation in sample size is in line with best statistical practices, and that the increase in accuracy observed is not a general feature of the unweighted mean proposed by Konopinski (2022). As such, I conclude that the use of a weighted mean, as employed by (Korunes & Samuk, 2020), remains the preferred method for averaging nucleotide diversity over multiple sites.


Assuntos
Nucleotídeos , Tamanho da Amostra , Viés
2.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103705

RESUMO

Accurate estimates of the rate of recombination are key to understanding a host of evolutionary processes as well as the evolution of the recombination rate itself. Model-based population genetic methods that infer recombination rates from patterns of linkage disequilibrium in the genome have become a popular method to estimate rates of recombination. However, these linkage disequilibrium-based methods make a variety of simplifying assumptions about the populations of interest that are often not met in natural populations. One such assumption is the absence of gene flow from other populations. Here, we use forward-time population genetic simulations of isolation-with-migration scenarios to explore how gene flow affects the accuracy of linkage disequilibrium-based estimators of recombination rate. We find that moderate levels of gene flow can result in either the overestimation or underestimation of recombination rates by up to 20-50% depending on the timing of divergence. We also find that these biases can affect the detection of interpopulation differences in recombination rate, causing both false positives and false negatives depending on the scenario. We discuss future possibilities for mitigating these biases and recommend that investigators exercise caution and confirm that their study populations meet assumptions before deploying these methods.


Assuntos
Fluxo Gênico , Recombinação Genética , Desequilíbrio de Ligação , Genética Populacional , Viés , Modelos Genéticos
3.
Mol Ecol ; 31(17): 4435-4439, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810344

RESUMO

Chromosomal inversions are often thought to facilitate local adaptation and population divergence because they can link multiple adaptive alleles into non-recombining genomic blocks. Selection should thus be more efficient in driving inversion-linked adaptive alleles to high frequency in a population, particularly in the face of maladaptive gene flow. But what if ecological conditions and hence selection on inversion-linked alleles change? Reduced recombination within inversions could then constrain the formation of optimal combinations of pre-existing alleles under these new ecological conditions. Here, we outline this idea of inversions limiting adaptation and divergence when ecological conditions change across time or space. We reason and use simulations to illustrate that the benefit of inversions for local adaptation and divergence under one set of ecological conditions can come with a concomitant constraint for adaptation to novel sets of ecological conditions. This limitation of inversions to adaptation may contribute to the maintenance of polymorphism within species.


Assuntos
Adaptação Fisiológica , Inversão Cromossômica , Aclimatação , Adaptação Fisiológica/genética , Alelos , Inversão Cromossômica/genética , Humanos , Polimorfismo Genético
4.
Mol Ecol Resour ; 21(4): 1359-1368, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33453139

RESUMO

Population genetic analyses often use summary statistics to describe patterns of genetic variation and provide insight into evolutionary processes. Among the most fundamental of these summary statistics are π and dXY , which are used to describe genetic diversity within and between populations, respectively. Here, we address a widespread issue in π and dXY calculation: systematic bias generated by missing data of various types. Many popular methods for calculating π and dXY operate on data encoded in the variant call format (VCF), which condenses genetic data by omitting invariant sites. When calculating π and dXY using a VCF, it is often implicitly assumed that missing genotypes (including those at sites not represented in the VCF) are homozygous for the reference allele. Here, we show how this assumption can result in substantial downward bias in estimates of π and dXY that is directly proportional to the amount of missing data. We discuss the pervasive nature and importance of this problem in population genetics, and introduce a user-friendly UNIX command line utility, pixy, that solves this problem via an algorithm that generates unbiased estimates of π and dXY in the face of missing data. We compare pixy to existing methods using both simulated and empirical data, and show that pixy alone produces unbiased estimates of π and dXY regardless of the form or amount of missing data. In summary, our software solves a long-standing problem in applied population genetics and highlights the importance of properly accounting for missing data in population genetic analyses.


Assuntos
Genética Populacional , Nucleotídeos , Algoritmos , Alelos , Genética Populacional/métodos , Genótipo , Nucleotídeos/genética , Software
5.
Curr Biol ; 30(8): 1517-1528.e6, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32275873

RESUMO

While recombination is widely recognized to be a key modulator of numerous evolutionary phenomena, we have a poor understanding of how recombination rate itself varies and evolves within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8,000 individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for which we then quantified crossovers. Interestingly, variation in recombination rate within and between populations largely manifested as differences in genome-wide recombination rate rather than remodeling of the local recombination landscape. Comparing populations, we discovered individuals from the Utah population displayed on average 8% higher crossover rates than the Arizona population, a statistically significant difference. Using a QST-FST analysis, we found that this difference in crossover rate was dramatically higher than expected under neutrality, indicating that this difference may have been driven by natural selection. Finally, using a combination of short- and long-read whole-genome sequencing, we found no significant association between crossover rate and structural variation at the 200-400 kb scale. Our results demonstrate that (1) there is abundant variation in genome-wide crossover rate in natural populations, (2) at the 200-400 kb scale, recombination rate appears to vary largely genome-wide, rather than in specific intervals, and (3) interpopulation differences in recombination rate may be the result of local adaptation.


Assuntos
Troca Genética , Drosophila/genética , Genoma de Inseto , Seleção Genética , Animais , Arizona , Feminino , Masculino , Utah
6.
Genetics ; 214(4): 1031-1045, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033968

RESUMO

Mapping the chromosomal rearrangements between species can inform our understanding of genome evolution, reproductive isolation, and speciation. Here, we present a novel algorithm for identifying regions of synteny in pairs of genetic maps, which is implemented in the accompanying R package syntR. The syntR algorithm performs as well as previous ad hoc methods while being systematic, repeatable, and applicable to mapping chromosomal rearrangements in any group of species. In addition, we present a systematic survey of chromosomal rearrangements in the annual sunflowers, which is a group known for extreme karyotypic diversity. We build high-density genetic maps for two subspecies of the prairie sunflower, Helianthus petiolaris ssp. petiolaris and H. petiolaris ssp. fallax Using syntR, we identify blocks of synteny between these two subspecies and previously published high-density genetic maps. We reconstruct ancestral karyotypes for annual sunflowers using those synteny blocks and conservatively estimate that there have been 7.9 chromosomal rearrangements per million years, a high rate of chromosomal evolution. Although the rate of inversion is even higher than the rate of translocation in this group, we further find that every extant karyotype is distinguished by between one and three translocations involving only 8 of the 17 chromosomes. This nonrandom exchange suggests that specific chromosomes are prone to translocation and may thus contribute disproportionately to widespread hybrid sterility in sunflowers. These data deepen our understanding of chromosome evolution and confirm that Helianthus has an exceptional rate of chromosomal rearrangement that may facilitate similarly rapid diversification.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Helianthus/genética , Cariótipo , Polimorfismo Genético
7.
Am Nat ; 195(2): 192-200, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017617

RESUMO

Closely related populations often display similar patterns of genomic differentiation, yet it remains an open question which ecological and evolutionary forces generate these patterns. The leading hypothesis is that this similarity in divergence is driven by parallel natural selection. However, several recent studies have suggested that these patterns may instead be a product of the depletion of genetic variation that occurs as result of background selection (i.e., linked negative selection). To date, there have been few direct tests of these competing hypotheses. To determine the relative contributions of background selection and parallel selection to patterns of repeated differentiation, we examined 24 independently derived populations of freshwater stickleback occupying a variety of niches and estimated genomic patterns of differentiation in each relative to their common marine ancestor. Patterns of genetic differentiation were strongly correlated across pairs of freshwater populations adapting to the same ecological niche, supporting a role for parallel natural selection. In contrast to other recent work, our study comparing populations adapting to the same niche produced no evidence signifying that similar patterns of genomic differentiation are generated by background selection. We also found that overall patterns of genetic differentiation were considerably more similar for populations found in closer geographic proximity. In fact, the effect of geography on the repeatability of differentiation was greater than that of parallel selection. Our results suggest that shared selective landscapes and ancestral variation are the key drivers of repeated patterns of differentiation in systems that have recently colonized novel environments.


Assuntos
Ecossistema , Seleção Genética , Smegmamorpha/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Água Doce , Variação Genética , Genética Populacional , Geografia , Polimorfismo de Nucleotídeo Único , Água do Mar
8.
Proc Natl Acad Sci U S A ; 117(6): 3045-3052, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980529

RESUMO

Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper wasp Polistes fuscatus-a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps in P. fuscatus contain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures in P. fuscatus' recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves.


Assuntos
Evolução Biológica , Cognição/fisiologia , Seleção Genética/genética , Vespas/genética , Vespas/fisiologia , Animais , Genoma de Inseto/genética , Reconhecimento Psicológico/fisiologia
9.
Evolution ; 72(4): 916-929, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29392719

RESUMO

Natural selection is often invoked to explain differences in brain size among vertebrates. However, the particular agents of selection that shape brain size variation remain obscure. Recent studies suggest that predators may select for larger brains because increased cognitive and sensory abilities allow prey to better elude predators. Yet, there is little direct evidence that exposure to predators causes the evolution of larger brains in prey species. We experimentally tested this prediction by exposing families of 1000-2000 F2 hybrid benthic-limnetic threespine stickleback to predators under naturalistic conditions, along with matched controls. After two generations of selection, we found that fish from the predator addition treatment had significantly smaller brains (specifically smaller telencephalons and optic lobes) than fish from the control treatment. After an additional generation of selection, we reared experimental fish in a common environment and found that this difference in brain size was maintained in the offspring of fish from the predator addition treatment. Our results provide direct experimental evidence that (a) predators can indeed drive the evolution of brain size--but not in the fashion commonly expected and (b) that the tools of experimental evolution can be used to the study the evolution of the vertebrate brain.


Assuntos
Encéfalo/anatomia & histologia , Cadeia Alimentar , Comportamento Predatório , Smegmamorpha/anatomia & histologia , Animais , Evolução Biológica , Seleção Genética , Truta/fisiologia
10.
Mol Ecol ; 26(17): 4378-4390, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28667780

RESUMO

Adaptation to new environments often occurs in the face of gene flow. Under these conditions, gene flow and recombination can impede adaptation by breaking down linkage disequilibrium between locally adapted alleles. Theory predicts that this decay can be halted or slowed if adaptive alleles are tightly linked in regions of low recombination, potentially favouring divergence and adaptive evolution in these regions over others. Here, we compiled a global genomic data set of over 1,300 individual threespine stickleback from 52 populations and compared the tendency for adaptive alleles to occur in regions of low recombination between populations that diverged with or without gene flow. In support of theory, we found that putatively adaptive alleles (FST and dXY outliers) tend to occur more often in regions of low recombination in populations where divergent selection and gene flow have jointly occurred. This result remained significant when we employed different genomic window sizes, controlled for the effects of mutation rate and gene density, controlled for overall genetic differentiation, varied the genetic map used to estimate recombination and used a continuous (rather than discrete) measure of geographic distance as proxy for gene flow/shared ancestry. We argue that our study provides the first statistical evidence that the interaction of gene flow and selection biases divergence toward regions of low recombination.


Assuntos
Fluxo Gênico , Genética Populacional , Seleção Genética , Smegmamorpha/genética , Alelos , Animais , Recombinação Genética
11.
Mol Ecol ; 25(10): 2111-3, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27213696

RESUMO

How does adaptation manage to occur in the face of overwhelming gene flow? One popular idea is that the suppression of recombination, for example the fixation of a chromosomal inversion, can maintain linkage disequilibrium between groups of locally adapted alleles that would otherwise be degraded by gene flow. This idea has captured the imagination of many geneticists and evolutionary biologists, but we still have only a basic understanding of its general importance. In this issue of Molecular Ecology, Kirubakaran et al. () examine the role of recombination suppression in a particularly fascinating example of adaptation in the face of gene flow: the evolution of migratory differences between interbreeding populations of cod. Along the north coast of Norway, two types of cod breed in the near-shore waters: a 'stationary' form that lives near the coast year round, and a 'migratory' form that lives far offshore and only returns to the coast to breed. Using a combination of approaches, Kirubakaran et al. () deftly demonstrate that the migratory form has completely fixed two adjacent inversions containing a suite of genes closely connected to migratory behaviour and feeding differences. This work provides an excellent example of how recombination suppression can facilitate adaptive divergence, and helps us understand the geographic and temporal scales over which genomic structural variation evolves.


Assuntos
Inversão Cromossômica , Desequilíbrio de Ligação , Fluxo Gênico , Noruega , Recombinação Genética
12.
Ecol Evol ; 4(16): 3236-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25473476

RESUMO

Uncovering factors that shape variation in brain morphology remains a major challenge in evolutionary biology. Recently, it has been shown that brain size is positively associated with level of parental care behavior in various taxa. One explanation for this pattern is that the cognitive demands of performing complex parental care may require increased brain size. This idea is known as the parental brain hypothesis (PBH). We set out to test the predictions of this hypothesis in wild populations of threespine stickleback (Gasterosteus aculeatus). These fish are commonly known to exhibit (1) uniparental male care and (2) sexual dimorphism in brain size (males>females). To test the PBH, we took advantage of the existence of closely related populations of stickleback that display variation in parental care behavior: common marine threespine sticklebacks (uniparental male care) and white threespine sticklebacks (no care). To begin, we quantified genetic differentiation among two common populations and three white populations from Nova Scotia. We found overall low differentiation among populations, although F ST was increased in between-type comparisons. We then measured the brain weights of males and females from all five populations along with two additional common populations from British Columbia. We found that sexual dimorphism in brain size is reversed in white stickleback populations: males have smaller brains than females. Thus, while several alternatives need to be ruled out, the PBH appears to be a reasonable explanation for sexual dimorphism in brain size in threespine sticklebacks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...