Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932873

RESUMO

Fertilizer-use efficiency is one of the most critical concerns in rice cultivation to reduce N losses, increase yields, and improve crop management. The effects of a new polymeric-coated controlled-release fertilizer (CRF) were compared to those of other slow-release and traditional fertilizers in a microscale experiment, which was carried out in cuvettes under partly controlled ambient conditions, and a large-scale field experiment. To evaluate the fertilizer's efficiency, nitrogen and water-use efficiency were calculated using the measurement of different photosynthetic and crop yield parameters. Improved responses regarding some of the analyzed physiological and growth parameters were observed for those plants fertilized with the new CRF. In the microscale experiment, significantly increased yields (ca. 35%) were produced in the plants treated with CRF as compared to traditional fertilizer. These results were in accordance with ca. 24% significant increased levels of N in leaves of CRF-treated plants, besides increased P, Fe, Mn, and cytokinin contents. At the field scale, similar yields were obtained with the slow-release or traditional fertilizers and CRF at a 20% reduced N dose. The new controlled-release fertilizer is a urea-based fertilizer coated with lignosulfonates, which is cheaply produced from the waste of pulp and wood industries, containing humic acids as biostimulants. In conclusion, CRF is recommended to facilitate rice crop management and to reduce contamination, as it can be formulated with lower N doses and because it is ecological manufacturing.

2.
Plant Physiol Biochem ; 148: 207-219, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31972389

RESUMO

In pepper crops, rootstocks that tolerate salt stress are not used because available commercial rootstocks offer limited profits. In this context, we obtained the hybrid NIBER®, a new salinity-tolerant rootstock that has been tested under real salinity field conditions for 3 years with 32%-80% higher yields than ungrafted pepper plants. This study aimed to set up the initial mechanisms involved in the salinity tolerance of grafted pepper plants using NIBER® as a rootstock to study root-shoot behavior, a basic requirement to develop efficient rootstocks. Gas exchange, Na+/K+, antioxidant capacity, nitrate reductase activity, ABA, proline, H2O2, phenols, MDA concentration and biomass were measured in ungrafted plants of cultivar Adige (A), self-grafted (A/A), grafted onto NIBER® (A/N) and reciprocal grafted plants (N/A), all exposed to 0 mM and 70 mM NaCl over a 10-day period. Salinity significantly and quickly decreased photosynthesis, stomatal conductance and nitrate reductase activity, but to lower extent in A/N plants compared to A, A/A and N/A. A/N plants showed decreases in the Na+/K+ ratio, ABA content and lipid peroxidation activity. This oxidative damage alleviation in A/N was probably due to an enhanced H2O2 level that activates antioxidant capacity to cope salinity stress, and acts as a signal molecule rather than a damaging one by contributing a major increase in phenols and, to a lesser extent, in proline concentration. These traits led to a minor impact on biomass in A/N plants under salinity conditions. Only the plants with the NIBER® rootstock controlled the scion by modulating responses to salinity.


Assuntos
Raízes de Plantas , Salinidade , Estresse Fisiológico , Hibridização Genética , Raízes de Plantas/fisiologia , Tolerância ao Sal/genética , Estresse Fisiológico/genética
3.
Front Plant Sci ; 10: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745905

RESUMO

In vegetables, tolerance to drought can be improved by grafting commercial varieties onto drought tolerant rootstocks. Grafting has emerged as a tool that copes with drought stress. In previous results, the A25 pepper rootstock accession showed good tolerance to drought in fruit production terms compared with non-grafted plants and other rootstocks. The aim of this work was to study if short-term exposure to drought in grafted plants using A25 as a rootstock would show tolerance to drought now. To fulfill this objective, some physiological processes involved in roots (rootstock) and leaves (scion) of grafted pepper plants were analyzed. Pepper plants not grafted (A), self-grafted (A/A), and grafted onto a tolerant pepper rootstock A25 (A/A25) were grown under severe water stress induced by PEG addition (-0.55 MPa) or under control conditions for 7 days in hydroponic pure solution. According to our results, water stress severity was alleviated by using the A25 rootstock in grafted plants (A/A25), which indicated that mechanisms stimulated by roots are essential to withstand stress. A/A25 had a bigger root biomass compared with plants A and A/A that resulted in better water absorption, water retention capacity and a sustained CO2 assimilation rate. Consequently, plants A/A25 had a better carbon balance, supported by greater nitrate reductase activity located mainly in leaves. In the non-grafted and self-grafted plants, the photosynthesis rate lowered due to stomatal closure, which limited transpiration. Consequently, part of NO3 - uptake was reduced in roots. This condition limited water uptake and CO2 fixation in plants A and A/A under drought stress, and accelerated oxidative damage by producing reactive oxygen species (ROS) and H2O2, which were highest in their leaves, indicating great sensitivity to drought stress and induced membrane lipid peroxidation. However, drought deleterious effects were slightly marked in plants A compared to A/A. To conclude, the A25 rootstock protects the scion against oxidative stress, which is provoked by drought, and shows better C and N balances that enabled the biomass to be maintained under water stress for short-term exposure, with higher yields in the field.

4.
J Plant Physiol ; 193: 1-11, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26918569

RESUMO

The performance of a salt-tolerant pepper (Capsicum annuum L.) accession (A25) utilized as a rootstock was assessed in two experiments. In a first field experiment under natural salinity conditions, we observed a larger amount of marketable fruit (+75%) and lower Blossom-end Root incidence (-31%) in commercial pepper cultivar Adige (A) grafted onto A25 (A/A25) when compared with ungrafted plants. In order to understand this behavior a second greenhouse experiment was conducted to determine growth, mineral partitioning, gas exchange and chlorophyll a fluorescence parameters, antioxidant systems and proline content in A and A/A25 plants under salinity conditions (80 mM NaCl for 14 days). Salt stress induced significantly stunted growth of A plants (-40.6% of leaf dry weight) compared to the control conditions, while no alterations were observed in A/A25 at the end of the experiment. Accumulation of Na(+) and Cl(-) in leaves and roots was similar in either grafted or ungrafted plants. Despite the activation of protective mechanisms (increment of superoxide dismutase, catalase, ascorbate peroxidase activity and non-photochemical quenching), A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of AN390) and substantial buildup of malondialdehyde (MDA) by-product, suggesting the inability to counteract salt-triggered damage. In contrast, A/A25 plants, which had a constitutive enhanced root apparatus, were able to maintain the shoot and root growth under salinity conditions by supporting the maintained photosynthetic performance. No increases in catalase and ascorbate peroxidase activities were observed in response to salinity, and MDA levels increased only slightly; indicating that alleviation of oxidative stress did not occur in A/A25 plants. In these plants the increased proline levels could protect enzymatic stability from salt-triggered damage, preserving the photosynthetic performance. The results could indicate that salt stress was vanished by the lack of negative effects on photosynthesis that support the maintained plant growth and increased marketable yield of the grafted plants.


Assuntos
Capsicum/fisiologia , Fotossíntese/fisiologia , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Capsicum/efeitos dos fármacos , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A , Malondialdeído/metabolismo , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Transpiração Vegetal/fisiologia , Prolina/metabolismo , Salinidade , Tolerância ao Sal , Estresse Fisiológico , Superóxido Dismutase/metabolismo
5.
Plant Sci ; 230: 12-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25480004

RESUMO

Grafting has been proposed as an interesting strategy that improves the responses of crops under salinity. In pepper, we reported increased fruit yield of the commercial 'Adige' cultivar under salinity when grafted onto accessions Capsicum chinense Jacq. 'ECU-973' (12) and Capsicum baccatum L. var. pendulum 'BOL-58' (14), whereas no effect was observed when grafted onto accession Capsicum annuum L var. 'Serrano' (5). We also analysed the physiological and biochemical mechanisms related to the tolerance conferred by these rootstocks. Responses to salinity (40 mM NaCl) were studied in the different plant combinations for 30 days by determining water relations, mineral content, proline accumulation, photosynthetic parameters, nitrate reductase activity and antioxidant capacity. Higher salt tolerance was achieved when the 'Adige' cultivar was grafted onto the 12 genotype, which allowed not only lower Na(+) and Cl(-) accumulation in the scion, but also ion selectivity maintenance, particularly Na(+)/K(+) discrimination. These traits led to a minor negative impact on photosynthesis, nitrate reductase activity and lipid peroxidation in grafted scion leaves. This work suggests that using tolerant pepper rootstocks that maintain the scion's ion homeostasis is a promising strategy to provide salinity tolerance and can consequently improve crop yield.


Assuntos
Capsicum/fisiologia , Transporte de Íons , Tolerância ao Sal , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Peroxidação de Lipídeos , Nitrato Redutase/metabolismo , Pressão Osmótica , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Prolina/metabolismo , Salinidade , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...