Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 24(6): e202200723, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36417575

RESUMO

Thin gold nanowires (NWs) are materials that could be used as support in different chemical reactions. Using density functional theory (DFT) it was shown that NWs that form linear atomic chains (LACs) are suitable for stimulating chemical reactions. To this end, the oxidation reaction of ethanol supported on the LACs of Au-NWs was investigated. Two types of LACs were used for the study, one pure and the other with an oxygen impurity. The results showed that the oxygen atom in the LAC fulfills important functions throughout the reaction pathway. Before the chemical reaction, it was observed that the LAC with impurity gains structural stability, that is, the oxygen acts as an anchor for the gold atoms in the LAC. In addition, the LAC was shown to be sensitive to disturbances in its vicinity, which modifies its nucleophilic character. During the chemical reaction, the oxidation of ethanol occurs through two different reaction paths and in two stages, both producing acetaldehyde (CH3 CHO). The different reaction pathways are a consequence of the presence of oxygen in the LAC (oxygen conditions the formation of reaction intermediates). In addition, the oxygen in the LAC also modifies the kinetic behavior in both reaction stages. It was observed that, by introducing an oxygen impurity in the LAC, the activation energy barriers decrease ∼69 % and ∼97 % in the first and second reaction stages, respectively.

2.
Phys Chem Chem Phys ; 13(4): 1506-14, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21109872

RESUMO

The electronic structure and the optical response of free catechol, [Ti(cat)(3)](2-) complex, and catechol bound to TiO(2) nanoclusters have been analysed using time dependent density functional theory (TD-DFT) performing calculations both in real time and frequency domains. Both approaches lead to similar results providing the basis sets and functionals are similar. For all cases, the simulated spectra agree well with the experimental ones. For the adsorption systems, the spectra show a band at 4.7 eV associated to intramolecular catechol π→π* transitions, and low energy bands corresponding to transitions from catechol to the cluster with a tail that is red-shifted when the coupling between the dye and the cluster is more effective. Thus, dissociative adsorption modes provide longer tails than the molecular mode. Although the bidentate complex is more stable than the monodentate, the energy difference between both is smaller when the cluster size increases. Small cluster models reproduce the main features of the optical response, however, the (TiO(2))(15) cluster constitutes the minimal size to provide a complete picture. In this case, the conventional TD-DFT (frequency domain) calculations are highly demanding computationally, while real time TD-DFT is more efficient and the calculations become affordable.

3.
Langmuir ; 25(12): 6869-74, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19419229

RESUMO

9(10),16-Dihydroxypalmitic acid (diHPA) is a particularly interesting polyhydroxylated fatty acid (1) because it is the main monomer of cutin, the most abundant biopolyester in nature, and (2) because the presence of a terminal and a secondary hydroxyl group in midchain positions provides an excellent model to study their intermolecular interactions in a confined phase such as self-assembled layers. In this study we have combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy, as well as molecular dynamics (MD) simulations to conclude that the self-assembling of diHPA molecules on mica is a layer by layer process following a Brunauer-Emmett-Teller (BET) type isotherm and with the first layer growing much faster than the rest. Interactions between secondary hydroxyls reinforce the cohesive energy of the monolayer, while the presence of the terminal hydroxyl group is necessary to trigger the multilayered growth. Besides, XPS and ATR-FT-IR spectroscopies clearly indicate that spontaneous self-esterification occurs upon self-assembling. The esterification reaction is a prerequisite to propose a self-assembly route for the biosynthesis of cutin in nature. Molecular dynamics simulations have shown that internal molecular reorganization within the self-assembled layers provides the appropriate intermolecular orientation to facilitate the nucleophilic attack and the release of a water molecule required by the esterification reaction.


Assuntos
Silicatos de Alumínio/química , Ácidos Palmíticos/química , Esterificação , Microscopia de Força Atômica , Propriedades de Superfície
4.
Phys Rev Lett ; 99(6): 066102, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17930842

RESUMO

The behavior of a Pd nanocluster on the rutile TiO2 (110) surface has been analyzed by extensive first principles molecular dynamics simulations between 100 K and 1073 K. Calculations predict a steep change in the morphological and electronic cluster structure around 800 K in excellent agreement with previous experimental evidence. At low temperature, the cluster geometry is mainly controlled by the substrate structure; however, upon the transition temperature, the cluster-substrate interaction decreases appreciably, and the cluster adopts a geometry more stable in vacuum and becomes metallic. These results illustrate at an atomistic level the influence of temperature on the geometrical and electronic properties of oxide-supported clusters.

5.
J Phys Chem B ; 110(39): 19552-6, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004818

RESUMO

A theoretical study on Ba adsorption on the rutile TiO(2) (110) surface has been carried out by means of plane-wave, plane augmented waves potential, density functional theory calculations. A model consisting on a (4 x 1) unit cell, which corresponds to coverage of 0.125 monolayer (ML), has been used and several potential adsorption sites on the stoichiometric surface have been tried. It has been found that the most stable site is with the Ba atom in a position where it is bound to two bridging oxygen atoms and an in-plane oxygen atom forming equivalent bonds (OB site). The adsorption energy is 0.71 eV referred to the formation of Ba bulk and is about 0.3 eV more stable than other adsorption sites. The Ba-surface interaction produces some surface relaxation in all cases. The OB site is stable at moderate temperatures; however, after extensive molecular dynamic calculations it is found that atoms diffuse on the surface by means of a jumping mechanism among several stable positions. The presence of bridging oxygen vacancies does not alter significantly this picture since the adsorption close to defects is not energetically favorable and the atoms tend to move away from vacancies. A strong covalent character has been found in the nature of the bonding, which contrasts with previous suggestions of the existence of Ba(2+) species on the surface. When the coverage is increased to 0.25 ML by adding a Ba atom to the supercell, there is a significant repulsion between Ba atoms that move away from each other to occupy OB sites. Thus, the adsorption energy values per atom diminish. For the stoichiometric surface two equivalent adsorption patterns are found, whereas only one is found for the defective surface.

6.
J Chem Phys ; 121(15): 7427-33, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15473815

RESUMO

We have carried out a systematic study of oxygen vacancy formation on the TiO2 (110) surface by means of plane-wave pseudopotential density-functional theory calculations. We have used models with the mean number of vacancies per surface unit cell being theta=0.25 and theta=0.5. The study comprises several kind of vacancies within the outermost layers of the surface. The use of a suitable set of technical parameter is often essential in order to get accurate results. We find that the presence of bridging vacancies is energetically favored in accordance to experimental data, although the formation of sub-bridging vacancies might be possible at moderate temperatures. Surprisingly, the spin state of the vacancy has little influence on the results. Atomic displacements are also analyzed and found to be strongly dependent on the particular arrangement of vacancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...