Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(47): 32972, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38025881

RESUMO

Expression of Concern for 'The controlled synthesis and DFT investigation of novel (0D)-(3D) ZnS/SiO2 heterostructures for photocatalytic applications' by Mohamed F. Sanad et al., RSC Adv., 2021, 11, 22352-22364, https://doi.org/10.1039/D1RA02284A.

2.
Chem Commun (Camb) ; 58(74): 10368-10371, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36017687

RESUMO

Tailoring the curvature-directed lattice strain in GNRs along with optimal surface anchoring of molybdenum disulfide (MoS2) quantum dots (QDs) can lead to a unique heterostructure with Pt-like HER activity (onset potential -60 mV). The curvature-induced electronic charge redistribution at the curved region in the graphene nanoribbons allows a facile GNR-MoS2 interfacial charge transfer in the heterostructure, making the interfacial sulfur (S) more active towards the HER. The density functional theory (DFT) calculations confirmed electronically activated interfacial S-based catalytic centers in the curved GNR-based heterostructure leading to Pt-like HER activity.

3.
Small ; 18(34): e2202648, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35900063

RESUMO

The enhanced safety, superior energy, and power density of rechargeable metal-air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost-effective and stable bifunctional catalyst that can replace expensive platinum (Pt)-based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped ß-gallium oxide (ß-Ga2 O3 ) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn-air batteries. The Sn-doped ß-Ga2 O3 sample with 15% Sn (Snx =0.15 -Ga2 O3 ) displayed exceptional catalytic activity for a bulk, non-noble metal-based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx =0.15 -Ga2 O3 leads to a prototype Zn-air battery with a high-power density of 138 mW cm-2 and improved cycling stability compared to devices with benchmark Pt-based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in ß-Ga2 O3 aid in regulating the electron density distribution on the Sn-doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.

4.
Nanoscale ; 14(10): 3858-3864, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35199813

RESUMO

Considerable efforts are being made to find cheaper and more efficient alternatives to the currently commercially available catalysts based on precious metals for the Hydrogen Evolution Reaction (HER). In this context, fullerenes have started to gain attention due to their suitable electronic properties and relatively easy functionalization. We found that the covalent functionalization of C60, C70 and Sc3N@IhC80 with diazonium salts endows the fullerene cages with ultra-active charge polarization centers, which are located near the carbon-diazonium bond and improve the efficiency towards the molecular generation of hydrogen. To support our findings, Electrochemical Impedance Spectroscopy (EIS), double layer capacitance (Cdl) and Mott-Schottky approximation were performed. Among all the functionalized fullerenes, DPySc3N@IhC80 exhibited a very low onset potential (-0.025 V vs. RHE) value, which is due to the influence of the inner cluster on the extra improvement of the electronic density states of the catalytic sites. For the first time, the covalent assembly of fullerenes and diazonium groups was used as an electron polarization strategy to build superior molecular HER catalytic systems.

5.
Nanotechnology ; 32(8): 085701, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33185193

RESUMO

A facile one-pot method was utilized at room-temperature for the synthesis of novel ternary nanocomposite of Ag@RGO/ZnO, which is introduced as a low cost, efficient and reliable UV absorber. The crystalline, morphological, structural, and optical characteristics of the as-synthesized samples were investigated by various techniques such as XRD, FE-SEM, HR-TEM, XPS, and DRS. The measurements confirm the successful fabrication of the Ag@RGO/ZnO ternary nanocomposite. Optical characterization showed the synergetic role of Ag NPs and RGO NSs in the enhancement of the light absorption of the ternary nanocomposite in the UV portion compared to the bare ZnO NPs. Additionally, band-gap narrowing was observed due to the Ag-doping impact where potential applications for the proposed nanocomposite have been suggested.

6.
J Colloid Interface Sci ; 581(Pt B): 905-918, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956910

RESUMO

Porous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbon encapsulated transition metal nanocatalysts (M@TP: M = Cu, Ni, Fe and Co) using commercial tissue paper. The morphology, crystalline structure, chemical composition and textural properties of the M@TP nanocatalysts were thoroughly characterized. The catalytic activity of the M@TP nanocatalysts was investigated for the degradation of Congo red (CR) via peroxymonosulfate activation. Co@TP-6 was found to be the most active catalyst allowing 97.68% degradation in 30 min with a higher rate constant of 0.109 min-1. The nanocatalysts also displayed a carbon shell thickness-dependent electrocatalytic hydrogen evolution reaction (HER) activity, most likely due to the shielding effect of the carbon layers over the electron transfer (ET) processes at the metal core/carbon interfaces. Remarkably, the Ni@TP-6 electrocatalyst, with the smaller carbon shell thickness, showed the best electrocatalytic performance. They delivered an ultralow onset potential of -30 mV vs RHE, an overpotential of 105 mV at a current density of 10 mA·cm-2 and an excellent electrochemical stability to keep the 92% of the initial current applied after 25000 s, which is comparable with the HER activity of the state-of-the-art Ni-based catalysts.

7.
RSC Adv ; 11(36): 22352-22364, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480787

RESUMO

A ZnS/SiO2 photocatalyst was synthesized using a low-cost sol-gel wet chemical procedure. The as-synthesized ZnS/SiO2 nanocomposites with different molar ratios exhibited superior performance in the photodegradation of two organic dyes under UV irradiation, with complete degradation of both dyes after 2 hours of exposure to UV irradiation. The photocatalyst structure, microstructure, and surface area were studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), and nitrogen adsorption (S BET) studies. The results demonstrate that the ZnS/SiO2 photocatalyst with 15% ZnS content has a bandgap energy similar to that of ZnS alone with a higher surface area of approximately 150 m2 g-1, which effectively increases the number of active sites and improves the photocatalytic activity of the prepared material. The measured bandgap energies were compared with the theoretical values obtained using the density functional theory (DFT) method, and the values were found to be very similar, with a low error percentage. In the case of a high ZnS content (greater than 15%), active site blocking occurred, and the removal rate dropped below 50%. The obtained results indicate that the photocatalytic data are in good agreement with the experimental characterization results for the prepared materials, including the BET and XRD results, confirming a close association between the photocatalytic activity and the surface area of the fabricated photocatalyst.

8.
Nanomaterials (Basel) ; 10(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050215

RESUMO

Ni-Cu nanoparticles have been synthesized by reducing Ni and Cu from metal precursors using a sol-gel route followed by annealing at 300 °C for 1, 2, 3, 6, 8, and 10 h for controlled self-regulating magnetic hyperthermia applications. Particle morphology and crystal structure revealed spherical nanoparticles with a cubic structure and an average size of 50, 60, 53, 87, and 87 nm for as-made and annealed samples at 300 °C for 1, 3, 6, and 10 h, respectively. Moreover, hysteresis loops indicated ferromagnetic behavior with saturation magnetization (Ms) ranging from 13-20 emu/g at 300 K. Additionally, Zero-filed cooled and field cooled (ZFC-FC) curves revealed that each sample contains superparamagnetic nanoparticles with a blocking temperature (TB) of 196-260 K. Their potential use for magnetic hyperthermia was tested under the therapeutic limits of an alternating magnetic field. The samples exhibited a heating rate ranging from 0.1 to 1.7 °C/min and a significant dissipated heating power measured as a specific absorption rate (SAR) of 6-80 W/g. The heating curves saturated after reaching the Curie temperature (Tc), ranging from 30-61 °C within the therapeutic temperature limit. An in vitro cytotoxicity test of these Ni-Cu samples in biological tissues was performed via exposing human breast cancer MDA-MB231 cells to a gradient of concentrations of the sample with 53 nm particles (annealed at 300 °C for 3 h) and reviewing their cytotoxic effects. For low concentrations, this sample showed no toxic effects to the cells, revealing its biocompatibility to be used in the future for in vitro/in vivo magnetic hyperthermia treatment of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...