Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 16(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895732

RESUMO

The creep and shrinkage of concrete play important roles for many nuclear power plant (NPP) and engineering structures. This paper benchmarks the standard and micromechanical models using a revamped and appended Northwestern University database of laboratory creep and shrinkage data with 4663 data sets. The benchmarking takes into account relevant concretes and conditions for NPPs using 781 plausible data sets and 1417 problematic data sets, which cover together 47% of the experimental data sets in the database. The B3, B4, and EC2 models were compared using the coefficient of variation of error (CoV) adjusted for the same significance for short-term and long-term measurements. The B4 model shows the lowest variations for autogenous shrinkage and basic and total creep, while the EC2 model performs slightly better for drying and total shrinkage. In addition, confidence levels at 5, 10, 90, and 95% are quantified in every decade. Two micromechanical models, Vi(CA)2T and SCK CEN, use continuum micromechanics for the mean field homogenization and thermodynamics of the water-pore structure interaction. Validations are carried out for the 28-day Young's modulus of concrete, basic creep compliance, and drying shrinkage of paste and concrete. The Vi(CA)2T model is the second best model for the 28-day Young's modulus and the basic creep problematic data sets. The SCK CEN micromechanical model provides good prediction for drying shrinkage.

2.
An Acad Bras Cienc ; 82(1): 25-41, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20209241

RESUMO

Both clays and calcium silicate hydrates(the main hydration products of Portland cements) exhibit a microstructure made up of lamellar particles. The microscopic mechanism responsible for the macroscopic creep of such materials is often described as the relative sliding of the sheets. This paper proposes a micromechanical approach to estimate the macroscopic creep behavior rising from this microscopic mechanism. The asymptotic evolution of creep at both short- and long-term is especially investigated. More precisely, a non-vanishing initial elastic strain is retrieved. At long-term, a threshold on porosity appears. At lower porosities, the creep evolution admits an asymptotic strain. At higher porosities, it admits an asymptotic strain rate.

3.
An. acad. bras. ciênc ; 82(1): 25-41, Mar. 2010. ilus, graf
Artigo em Inglês | LILACS | ID: lil-539313

RESUMO

Both clays and calcium silicate hydrates(the main hydration products of Portland cements) exhibit a microstructure made up of lamellar particles. The microscopic mechanism responsible for the macroscopic creep of such materials is often described as the relative sliding of the sheets. This paper proposes a micromechanical approach to estimate the macroscopic creep behavior rising from this microscopic mechanism. The asymptotic evolution of creep at both short- and long-term is especially investigated. More precisely, a non-vanishing initial elastic strain is retrieved. At long-term, a threshold on porosity appears. At lower porosities, the creep evolution admits an asymptotic strain. At higher porosities, it admits an asymptotic strain rate.


Argilas e hidratos de cálcio (principal produto de cimentos) ambos exibem microestrutura composta por partículas em forma de lamelas. O principal mecanismo responsável pelo fenômeno de fluência macroscópico é frequentemente descrito pelo deslizamento entre as lamelas. O artigo propõe uma abordagem micromecânica para estimar a fluência macroscópica que surge a partir do mecanismo microscópico. A evolução assintótica da fluência para tempos curtos e longos é especialmente investigada. Mais precisamente uma tensão inicial não nula é derivada. Para tempos longos um limiar de porosidade surge da modelagem. Na faixa de porosidades mais baixas a evolução da fluência admite deformação assintótica. Para porosidades altas o problema admite taxa de deformação assintótica.

4.
J Biomed Mater Res A ; 88(1): 149-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18286602

RESUMO

Hydroxyapatite (HA) biomaterials production has been a major field in biomaterials science and biomechanical engineering. As concerns prediction of their stiffness and strength, we propose to go beyond statistical correlations with porosity or empirical structure-property relationships, as to resolve the material-immanent microstructures governing the overall mechanical behavior. The macroscopic mechanical properties are estimated from the microstructures of the materials and their composition, in a homogenization process based on continuum micromechanics. Thereby, biomaterials are envisioned as porous polycrystals consisting of HA needles and spherical pores. Validation of respective micromechanical models relies on two independent experimental sets: biomaterial-specific macroscopic (homogenized) stiffness and uniaxial (tensile and compressive) strength predicted from biomaterial-specific porosities, on the basis of biomaterial-independent ("universal") elastic and strength properties of HA, are compared with corresponding biomaterial-specific experimentally determined (acoustic and mechanical) stiffness and strength values. The good agreement between model predictions and the corresponding experiments underlines the potential of micromechanical modeling in improving biomaterial design, through optimization of key parameters such as porosities or geometries of microstructures, in order to reach the desired values for biomaterial stiffness or strength.


Assuntos
Materiais Biocompatíveis/química , Durapatita , Mecânica , Materiais Biocompatíveis/normas , Elasticidade , Teste de Materiais/métodos , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...