Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 3(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31879279

RESUMO

CLIC4 and CLIC1 are members of the well-conserved chloride intracellular channel proteins (CLICs) structurally related to glutathione-S-transferases. Here, we report new roles of CLICs in cytokinesis. At the onset of cytokinesis, CLIC4 accumulates at the cleavage furrow and later localizes to the midbody in a RhoA-dependent manner. The cell cycle-dependent localization of CLIC4 is abolished when its glutathione S-transferase activity-related residues (C35A and F37D) are mutated. Ezrin, anillin, and ALIX are identified as interaction partners of CLIC4 at the cleavage furrow and midbody. Strikingly, CLIC4 facilitates the activation of ezrin at the cleavage furrow and reciprocally inhibition of ezrin activation diminishes the translocation of CLIC4 to the cleavage furrow. Furthermore, knockouts of CLIC4 and CLIC1 cause abnormal blebbing at the polar cortex and regression of the cleavage furrow at late cytokinesis leading to multinucleated cells. We conclude that CLIC4 and CLIC1 function together with ezrin where they bridge plasma membrane and actin cytoskeleton at the polar cortex and cleavage furrow to promote cortical stability and successful completion of cytokinesis in mammalian cells.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Citocinese/genética , Citoesqueleto de Actina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Canais de Cloreto/genética , Proteínas do Citoesqueleto/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/metabolismo , Mapas de Interação de Proteínas , Transfecção , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Mol Cell Proteomics ; 18(9): 1756-1771, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221721

RESUMO

Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Choque Térmico HSP40/metabolismo , Fosfoproteínas/metabolismo , Tetraspanina 28/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/genética , Feminino , Proteínas de Choque Térmico HSP40/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Mamárias Experimentais/patologia , Camundongos Nus , Reprodutibilidade dos Testes , Tetraspanina 28/genética
3.
J Proteome Res ; 17(5): 1784-1793, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651847

RESUMO

Quantitative profiling of cell surface proteins is critically important for the understanding of cell-cell communication, signaling, tissue development, and homeostasis. Traditional proteomics methods are challenging for cell surface proteins due to their hydrophobic nature and low abundance, necessitating alternative methods to efficiently identify and quantify this protein group. Here we established carboxyl-reactive biotinylation for selective and efficient biotinylation and isolation of surface-exposed proteins of living cells. We assessed the efficiency of carboxyl-reactive biotinylation for plasma membrane proteins by comparing it with a well-established protocol, amine-reactive biotinylation, using SILAC (stable isotope labeling in cell culture). Our results show that carboxyl-reactive biotinylation of cell surface proteins is both more selective and more efficient than amine-reactive biotinylation. We conclude that it is a useful approach, which is partially orthogonal to amine-reactive biotinylation, allowing us to cast a wider net for a comprehensive profiling of cell surface proteins.


Assuntos
Biotinilação/métodos , Dióxido de Carbono/metabolismo , Proteínas de Membrana/análise , Animais , Células Cultivadas , Humanos , Marcação por Isótopo , Proteínas de Membrana/isolamento & purificação , Métodos , Coloração e Rotulagem/métodos
4.
Sci Rep ; 8(1): 2269, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396449

RESUMO

The successful completion of cytokinesis requires the coordinated activities of diverse cellular components including membranes, cytoskeletal elements and chromosomes that together form partly redundant pathways, depending on the cell type. The biochemical analysis of this process is challenging due to its dynamic and rapid nature. Here, we systematically compared monopolar and bipolar cytokinesis and demonstrated that monopolar cytokinesis is a good surrogate for cytokinesis and it is a well-suited system for global biochemical analysis in mammalian cells. Based on this, we established a phosphoproteomic signature of cytokinesis. More than 10,000 phosphorylation sites were systematically monitored; around 800 of those were up-regulated during cytokinesis. Reconstructing the kinase-substrate interaction network revealed 31 potentially active kinases during cytokinesis. The kinase-substrate network connects proteins between cytoskeleton, membrane and cell cycle machinery. We also found consensus motifs of phosphorylation sites that can serve as biochemical markers specific to cytokinesis. Beyond the kinase-substrate network, our reconstructed signaling network suggests that combination of sumoylation and phosphorylation may regulate monopolar cytokinesis specific signaling pathways. Our analysis provides a systematic approach to the comparison of different cytokinesis types to reveal alternative ways and a global overview, in which conserved genes work together and organize chromatin and cytoplasm during cytokinesis.


Assuntos
Citocinese , Células Epiteliais/fisiologia , Fosfoproteínas/análise , Mapas de Interação de Proteínas , Proteoma/análise , Transdução de Sinais , Células Epiteliais/química , Células HeLa , Humanos
6.
J Proteome Res ; 14(9): 4087-98, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26270265

RESUMO

Cytokinesis is the last step of the cell cycle that requires coordinated activities of the microtubule cytoskeleton, actin cytoskeleton, and membrane compartments. Aurora B kinase is one of the master regulatory kinases that orchestrate multiple events during cytokinesis. To reveal targets of the Aurora B kinase, we combined quantitative mass spectrometry with chemical genetics. Using the quantitative proteomic approach, SILAC (stable isotope labeling with amino acids in cell culture), we analyzed the phosphoproteome of monopolar cytokinesis upon VX680- or AZD1152-mediated aurora kinase inhibition. In total, our analysis quantified over 20 000 phosphopeptides in response to the Aurora-B kinase inhibition; 246 unique phosphopeptides were significantly down-regulated and 74 were up-regulated. Our data provide a broad analysis of downstream effectors of Aurora kinase and offer insights into how Aurora kinase regulates cytokinesis.


Assuntos
Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo , Fosfoproteínas/análise , Proteoma/análise , Proteoma/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Citocinese/fisiologia , Células HeLa , Humanos , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...