Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 222: 113561, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146913

RESUMO

Lectins are a family of glycan-binding proteins, many of which have been established as key targets for therapeutic intervention. They play a central role in many physiological and cellular processes. With the advances in protein crystallography, NMR spectroscopy and computational power over the past couple of decades, the carbohydrate-receptor interactions are now well understood and characterized. Nevertheless, designing efficient carbohydrate inhibitors is a laborious endeavour. They are known to have weak affinities, unsuitable pharmacokinetic properties and highly cumbersome/complex synthetic routes. To circumvent these issues many non-carbohydrate strategies have been reported. Galectins are a sub-family of lectin proteins which have been recognized as crucial targets for a wide variety of diseases. Many candidates targeting galectins are currently in advanced stages of clinical trials. There have been a few reports of non-carbohydrate inhibitors targeting galectins which comprise of peptide-based inhibitors and a recent flourish of heterocyclic inhibitors. In this review, we have briefly highlighted the strategies like fragment-based drug-design and high-throughput screens utilized to identify non-carbohydrate based antagonists for proteins wherein the presence of a sugar was believed to be essential. Additionally, we have described the literature pertaining to non-carbohydrate inhibitors of galectins and how previous reports on rational substitution of a sugar motif could aid in design of heterocyclics that inhibit lectins/galectins. We have concluded with remarks on challenges, gap in our understanding and future perspectives concerned with rational design of non-carbohydrate molecules targeting lectins/galectins.


Assuntos
Galectinas/antagonistas & inibidores , Peptídeos/farmacologia , Relação Dose-Resposta a Droga , Galectinas/metabolismo , Estrutura Molecular , Peptídeos/química , Relação Estrutura-Atividade
2.
Expert Opin Ther Pat ; 31(8): 709-721, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749494

RESUMO

INTRODUCTION: Galectins are ubiquitous in nature. They have established themselves as a protein family of high therapeutic potential and play a role in a wide variety of diseases like cancer, fibrosis, and Alzheimer's. Within the galectin family, galectin- 1 and galectin- 3 have been widely studied and their roles and functions have now been well established. AREAS COVERED: In this review, we discuss the important advancements in the development of galectin-1 & 3 inhibitors. All patents filed detailing the divergent strategies to inhibit galectin-1 & 3 from 2016 to present have been covered and discussed. EXPERT OPINION: Over the past couple of decades, distinct galectin inhibitors have been synthesized, reported and studied. Among all, the mono and disaccharide-based antagonists have been found to be considerably successful. However, the cumbersome synthetic route followed to develop this class of inhibitors, in addition to complexity involved in making selective modifications within these molecules has posed a significant challenge. Recently, there have been numerous reports on heterocyclic-based galectin inhibitors. If these are established as potent galectin inhibitors, their ease of synthesis and tunability could overcome the potential drawbacks of carbohydrate-based inhibitors and could thus be exploited to develop efficient and highly specific galectin inhibitors.


Assuntos
Proteínas Sanguíneas/antagonistas & inibidores , Galectina 1/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Proteínas Sanguíneas/metabolismo , Desenvolvimento de Medicamentos , Fibrose/tratamento farmacológico , Fibrose/patologia , Galectina 1/metabolismo , Galectinas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Patentes como Assunto
3.
RSC Adv ; 10(50): 29873-29884, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35518264

RESUMO

The Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has been rapidly transmitting and leaving its footprints across the globe. Stringent measures like complete lockdown and extensive testing have been employed by many countries to slow it down in its tracks until a viable treatment is found. Therefore, in the current scenario, prompt solutions need to be uncovered to tackle the virus. In the present study, 330 galectin inhibitors were tested against SARS-CoV-2 spike (S) protein with the aid of molecular docking and molecular dynamics. Finally, the binding free energy and contributing energies were calculated for 2 top scoring ligands by using MM-GBSA method. Many of the galectin inhibitors displayed high binding score against the S protein. They were found to bind to the site of contact of S protein to ACE2. Thus, they show promise of disrupting the ACE2-S protein binding and prevent the virus from invading the host cell. Among the ligands screened, TD-139, a molecule currently in Phase IIb clinical trials, was found to be a potential hit. The present study paves the way for in vitro and in vivo testing of galectin inhibitors against SARS-CoV-2. In addition, it warrants a swift examination of TD-139 for treating COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...