Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 29(4): 770-81, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20033061

RESUMO

A key intermediate in translocation is an 'unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two- and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.


Assuntos
Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Substâncias Macromoleculares/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , Conformação Proteica , Estabilidade Proteica , Estabilidade de RNA , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 107(2): 709-14, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20018653

RESUMO

The mechanism of substrate translocation through the ribosome is central to the rapid and faithful translation of mRNA into proteins. The rate-limiting step in translocation is an unlocking process that includes the formation of an "unlocked" intermediate state, which requires the convergence of large-scale conformational events within the ribosome including tRNA hybrid states formation, closure of the ribosomal L1 stalk domain, and subunit ratcheting. Here, by imaging of the pretranslocation ribosome complex from multiple structural perspectives using two- and three-color single-molecule fluorescence resonance energy transfer, we observe that tRNA hybrid states formation and L1 stalk closure, events central to the unlocking mechanism, are not tightly coupled. These findings reveal that the unlocked state is achieved through a stochastic-multistep process, where the extent of conformational coupling depends on the nature of tRNA substrates. These data suggest that cellular mechanisms affecting the coupling of conformational processes on the ribosome may regulate the process of translation elongation.


Assuntos
Biossíntese de Proteínas , Proteínas/genética , RNA Mensageiro/genética , Ribossomos/metabolismo , Sequência Conservada , Transferência Ressonante de Energia de Fluorescência , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Cinética , Modelos Moleculares , Hibridização de Ácido Nucleico , Conformação Proteica , Proteínas/química , RNA de Transferência/genética , RNA de Transferência de Metionina/química , Ribossomos/genética , Ribossomos/ultraestrutura
3.
Trends Biochem Sci ; 34(8): 390-400, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19647434

RESUMO

The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/química , Ribossomos/genética , Termodinâmica
4.
J Mol Biol ; 386(3): 648-61, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19146858

RESUMO

Gentamicin is a potent antibiotic that is used in combination therapy for inhalation anthrax disease. The drug is also often used in therapy for methicillin-resistant Staphylococcusaureus. Gentamicin works by flipping a conformational switch on the ribosome, disrupting the reading head (i.e., 16S ribosomal decoding bases 1492-1493) used for decoding messenger RNA. We use explicit solvent all-atom molecular simulation to study the thermodynamics of the ribosomal decoding site and its interaction with gentamicin. The replica exchange molecular dynamics simulations used an aggregate sampling of 15 mus when summed over all replicas, allowing us to explicitly calculate the free-energy landscape, including a rigorous treatment of enthalpic and entropic effects. Here, we show that the decoding bases flip on a timescale faster than that of gentamicin binding, supporting a stochastic gating mechanism for antibiotic binding, rather than an induced-fit model where the bases only flip in the presence of a ligand. The study also allows us to explore the nonspecific binding landscape near the binding site and reveals that, rather than a two-state bound/unbound scenario, drug dissociation entails shuttling between many metastable local minima in the free-energy landscape. Special care is dedicated to validation of the obtained results, both by direct comparison to experiment and by estimation of simulation convergence.


Assuntos
Antibacterianos/metabolismo , Simulação por Computador , Gentamicinas/metabolismo , Ribossomos/química , Ribossomos/efeitos dos fármacos , Cinética , Modelos Moleculares , Termodinâmica
5.
Biophys J ; 96(2): L7-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19167285

RESUMO

Riboswitches are noncoding RNAs that regulate gene expression in response to changing concentrations of specific metabolites. Switching activity is affected by the interplay between the aptamer domain and expression platform of the riboswitch. The aptamer domain binds the metabolite, locking the riboswitch in a ligand-bound conformation. In absence of the metabolite, the expression platform forms an alternative secondary structure by sequestering the 3' end of a nonlocal helix called P1. We use all-atom structure-based simulations to characterize the folding, unfolding, and metabolite binding of the aptamer domain of the S-adenosylmethionine-1 (SAM-1) riboswitch. Our results suggest that folding of the nonlocal helix (P1) is rate-limiting in aptamer domain formation. Interestingly, SAM assists folding of the P1 helix by reducing the associated free energy barrier. Because the 3' end of the P1 helix is sequestered by an alternative helix in the absence of metabolites, this observed ligand-control of P1 formation provides a mechanistic explanation of expression platform regulation.


Assuntos
Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo , Regiões não Traduzidas/química , Regiões não Traduzidas/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Simulação por Computador , Modelos Moleculares , Termodinâmica
6.
Proteins ; 75(2): 430-41, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18837035

RESUMO

Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function.


Assuntos
Peptídeos/química , Proteínas de Plantas/química , Proteínas/química , Proteína Tirosina Quinase CSK , Simulação por Computador , Modelos Moleculares , Estrutura Molecular , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Prolina/química , Prolina/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas/metabolismo , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Temperatura , Termodinâmica , Quinases da Família src
7.
Biopolymers ; 89(7): 565-77, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18286627

RESUMO

This article reviews the application of single-molecule fluorescence resonance energy transfer (smFRET) methods to the study of protein synthesis catalyzed by the ribosome. smFRET is a powerful new technique that can be used to investigate dynamic processes within enzymes spanning many orders of magnitude. The application of wide-field smFRET imaging methods to the study of dynamic processes in the ribosome offers a new perspective on the mechanism of protein synthesis. Using this technique, the structural and kinetic parameters of tRNA motions within wild-type and specifically mutated ribosome complexes have been obtained that provide valuable new insights into the mechanism and regulation of translation elongation. The results of these studies are discussed in the context of current knowledge of the ribosome mechanism from both structural and biophysical perspectives.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Biossíntese de Proteínas/fisiologia , Ribossomos/química , Ribossomos/metabolismo , Termodinâmica , Sítios de Ligação/genética , Simulação por Computador , Mutagênese Sítio-Dirigida , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/genética
8.
BMC Bioinformatics ; 8: 470, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18053142

RESUMO

BACKGROUND: The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field. RESULTS: The analysis reveals low-frequency vibrations that facilitate the accommodation of RNA duplexes - an essential step in target recognition. The Pyrococcus furiosus and Aquifex aeolicus Argonaute proteins both exhibit low-frequency torsion and hinge motions; however, differences in the overall architecture of the proteins cause the detailed dynamics to be significantly different. CONCLUSION: Overall, low-frequency vibrations of Argonaute are consistent with mechanisms within the current reaction cycle model for RNA interference.


Assuntos
Proteínas Arqueais/ultraestrutura , Conformação Proteica , Complexo de Inativação Induzido por RNA/química , Complexo de Inativação Induzido por RNA/ultraestrutura , Proteínas Arqueais/química , Archaeoglobus fulgidus/enzimologia , Archaeoglobus fulgidus/genética , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Movimento (Física) , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , RNA/química , Interferência de RNA/fisiologia , Termodinâmica , Torção Mecânica , Vibração
9.
Proc Natl Acad Sci U S A ; 102(44): 15854-9, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16249344

RESUMO

Decoding is the key step during protein synthesis that enables information transfer from RNA to protein, a process critical for the survival of all organisms. We have used large-scale (2.64 x 10(6) atoms) all-atom simulations of the entire ribosome to understand a critical step of decoding. Although the decoding problem has been studied for more than four decades, the rate-limiting step of cognate tRNA selection has only recently been identified. This step, known as accommodation, involves the movement inside the ribosome of the aminoacyl-tRNA from the partially bound "A/T" state to the fully bound "A/A" state. Here, we show that a corridor of 20 universally conserved ribosomal RNA bases interacts with the tRNA during the accommodation movement. Surprisingly, the tRNA is impeded by the A-loop (23S helix 92), instead of enjoying a smooth transition to the A/A state. In particular, universally conserved 23S ribosomal RNA bases U2492, C2556, and C2573 act as a 3D gate, causing the acceptor stem to pause before allowing entrance into the peptidyl transferase center. Our simulations demonstrate that the flexibility of the acceptor stem of the tRNA, in addition to flexibility of the anticodon arm, is essential for tRNA selection. This study serves as a template for simulating conformational changes in large (>10(6) atoms) biological and artificial molecular machines.


Assuntos
Simulação por Computador , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Transporte Biológico , Sequência Conservada , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/metabolismo
10.
Biophys J ; 87(4): 2714-22, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15454463

RESUMO

The ribosome is a large molecular complex that consists of at least three ribonucleic acid molecules and a large number of proteins. It translates genetic information from messenger ribonucleic acid and makes protein accordingly. To better understand ribosomal function and provide information for designing biochemical experiments require knowledge of the complete structure of the ribosome. For expanding the structural information of the ribosome, we took on the challenge of developing a detailed Thermus thermophilus ribosomal structure computationally. By combining information derived from the low-resolution x-ray structure of the 70S ribosome (providing the overall fold), high-resolution structures of the ribosomal subunits (providing the local structure), sequences, and secondary structures, we have developed an atomic model of the T. thermophilus ribosome using a homology modeling approach. Our model is stereochemically sound with a consistent single-species sequence. The overall folds of the three ribosomal ribonucleic acids in our model are consistent with those in the low-resolution crystal structure (root mean-square differences are all <1.9 angstroms). The large overall interface area (approximately 2500 angstroms2) of intersubunit bridges B2a, B3, and B5, and the inherent flexibility in regions connecting the contact residues are consistent with these bridges serving as anchoring patches for the ratcheting and rolling motions between the two subunits during translocation.


Assuntos
Modelos Moleculares , RNA Ribossômico/química , Proteínas Ribossômicas/química , Ribossomos/química , Thermus thermophilus/química , Simulação por Computador , Substâncias Macromoleculares/química , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Thermus thermophilus/ultraestrutura
11.
Curr Opin Struct Biol ; 13(2): 168-74, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12727509

RESUMO

Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields).


Assuntos
Simulação por Computador , Modelos Químicos , Movimento (Física) , Peptídeos/química , Peptídeos/classificação , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Temperatura , Fatores de Tempo
12.
Nat Struct Biol ; 9(10): 750-5, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12244297

RESUMO

Understanding the structural basis of ribosomal function requires close comparison between biochemical and structural data. Although a large amount of biochemical data are available for the Escherichia coli ribosome, the structure has not been solved to atomic resolution. Using a new RNA homology procedure, we have modeled the all-atom structure of the E. coli 30S ribosomal subunit. We find that the tertiary structure of the ribosome core, including the A-, P- and E-sites, is highly conserved. The hypervariable regions in our structure, which differ from the structure of the 30S ribosomal subunit from Thermus thermophilus, are consistent with the cryo-EM map of the E. coli ribosome.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Ribossômicas/química , Ribossomos/química , Sequência de Bases , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Thermus thermophilus/genética
13.
Proc Natl Acad Sci U S A ; 99(5): 2782-7, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11867710

RESUMO

We study atomic models of the thermodynamics of the structural transition of peptides that form alpha-helices. The effect of sequence variation on alpha-helix formation for alanine-rich peptides, Ac-Ala21-methyl amide (A21) and Ac-A5 (AAARA)3A-methyl amide (Fs peptide), is investigated by atomic simulation studies of the thermodynamics of the helix-coil transition in explicit water. The simulations show that the guanidinium group in the Arg side chains in the Fs peptide interacts with the carbonyl group four amino acids upstream in the chain and desolvates backbone hydrogen bonds. This desolvation can be directly correlated with a higher probability of hydrogen bond formation. We find that Fs has higher helical content than A21 at all temperatures. A small modification in the amber force field reproduces the experimental helical content and helix-coil transition temperatures for the Fs peptide.


Assuntos
Ligação de Hidrogênio , Peptídeos/química , Algoritmos , Simulação por Computador , Modelos Moleculares , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...