Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 182: 114134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519156

RESUMO

Hesperidin is a phenolic compound usually found in citrus fruits, which is known for its anti-inflammatory and antioxidant properties. This bioactive compound has already been used to formulate medications to treat chronic venous insufficiency. In this work, through a system which allows the in-line coupling of the pressurized liquid extraction (PLE) and high-intensity ultrasound (HIUS) with solid phase extraction (SPE), and analysis by high-performance liquid chromatography with UV-Vis detector (HPLC-UV) in on-line mode, a method was developed to obtain, separate, and quantify hesperidin from the industrial waste of lime. An eco-friendly approach with water and ethanol as extraction solvents was used. Parameters such as temperature (80, 100, and 120 °C) and HIUS power (0, 200, and 400 W) were evaluated regarding hesperidin yield. In this context, the higher hesperidin yield (18.25 ± 1.52 mg/g) was achieved using water at a subcritical state (120 °C and 15 MPa). The adsorbent SepraTM C-18-E isolated hesperidin from the other extracted compounds employing 50% ethanol in the SPE elution. The possibility ofon-lineanalysis coupling a high-performance liquid chromatograph to an ultraviolet detector (HPLC-UV) system was studied and shown to be a feasible approach for developing integrated technologies. Conventional extractions and their antioxidant capacities were evaluated, highlighting the advantages of the HIUS-PLE-SPE extractive method. Furthermore, the on-linechromatographic analysis showed the potential of the HIUS-PLE-SPE- HPLC-UV system to quantify the extracted compounds in real time.


Assuntos
Compostos de Cálcio , Hesperidina , Óxidos , Antioxidantes , Água/química , Etanol
2.
Food Chem ; 428: 136814, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429238

RESUMO

This work developed a universal UPLC-PDA method based on safe reagents to analyze anthocyanins from different foods. Nine foods were studied by the developed chromatographic method, which was constructed using a solid core C18 column and a binary mobile phase composed of (A) water (0.25 molcitric acid.Lsolvent-1), and (B) ethanol. A total running time of 6 min was obtained, the faster comprehensive method for anthocyanins analysis. Mass spectrometry analysis was employed to identify a comprehensive set of 53 anthocyanins comprising glycosylated and acylated cyanidin, pelargonidin, malvidin, peonidin, petunidin, and delphinidin derivatives. Cyanidin-3-O-glucoside (m/z+ 449) and cyanidin-3-O-rutinoside (m/z+ 595) were used as standards to validate the accuracy of the developed method. The analytical parameters were evaluated, including intra-day and inter-day precision, robustness, repeatability, retention factor (k), resolution, and peak symmetry factor. The current method demonstrated excellent chromatographic resolution, making it a powerful tool for analyzing anthocyanins pigments.


Assuntos
Antocianinas , Produtos Biológicos , Antocianinas/análise , Produtos Biológicos/análise , Espectrometria de Massas , Frutas/química , Etanol/análise , Cromatografia Líquida de Alta Pressão
3.
Food Chem ; 407: 135117, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512911

RESUMO

Due to the complex characteristics and variable composition of apple pomace, sample preparation for chromatographic analysis is a great challenge. To solve this problem, we proposed using a solvent gradient using Pressurized Liquid Extraction (PLE), where the solvent gradually changes from water to ethanol during the extraction. Different dynamic gradients, static time, and temperatures were evaluated and showed relevant effects on the yields of target analytes. It was possible to improve extraction yields of compounds with different characteristics using the extraction solvent gradient. By coupling solid-phase extraction in-line, it was possible to separate compounds into fractions, where furfural, HMF, and chlorogenic acid gradually eluted from the adsorbent. At the same time, flavonoids were retained and eluted in the later fractions. On-line analysis by HPLC provided real-time information about the process and permitted the creation of a 3D chromatogram of the sample.


Assuntos
Malus , Cromatografia Líquida de Alta Pressão/métodos , Malus/química , Fenóis/análise , Solventes/química , Extração em Fase Sólida
4.
J Sep Sci ; 46(3): e2200440, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36449264

RESUMO

Propolis is a bee product with a complex chemical composition formed by several species from different geographical origins. The complex propolis composition requires an accurate and reproducible characterization of samples to standardize the quality of the material sold to consumers. This work developed an ultra-high-performance liquid chromatography with a photodiode array detector method to analyze propolis phenolic compounds based on the two key propolis biomarkers, Artepillin C and p-Coumaric acid. This choice was made due to the complexity of the sample with the presence of several compounds. The optimized method was hyphenated with mass spectrometry detection allowing the detection of 23 different compounds. A step-by-step strategy was used to optimize temperature, flow rate, mobile phase composition, and re-equilibration time. Reverse-phase separation was achieved with a C18 fused-core column packed with the commercially available smallest particles (1.3 nm). Using a fused-core column with ultra-high-performance liquid chromatography allows highly efficient, sensitive, accurate, and reproducible determination of compounds extracted from propolis with an outstanding sample throughput and resolution. Optimized conditions permitted the separation of the compounds in 5.50 min with a total analysis time (sample-to-sample) of 6.50 min.


Assuntos
Própole , Cromatografia Líquida de Alta Pressão/métodos , Própole/análise , Reprodutibilidade dos Testes , Fenóis/análise , Espectrometria de Massas
5.
Food Res Int ; 161: 111846, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192975

RESUMO

Propolis is a rich source of known and largely explored bioactive compounds with many pharmacological properties. It is used in several commercialized products, such as propolis-enriched honey, candies, mouth and throat sprays, soaps, toothpaste, and skin creams. However, the great diversity of propolis products and different types make the standardization of realistic quality control procedures challenging. Moreover, the extraction of propolis bioactive compounds depends on the technique and the solvent used. In Brazil, the Ministry of Agriculture, Livestock, and Supply (MAPA) set standards to establish commercialized propolis extracts' identity and quality. In addition, according to legislation, propolis extracts must present the main classes of phenols at 200 and 400 nm on the UV spectrum. Still, it is not specified which analysis method should be used to guarantee feasible quality control of the commercialized samples. For this, we proposed a new fast UHPLC-PDA-MS/MS method for analysis and quantification of propolis phenolic compounds. Moreover, we hypothesize that there is no efficient monitoring regarding the quality of the propolis extracts sold in Brazilian stores. Therefore, the present study aimed to perform quality control of 17 Brazilian propolis extracts produced in the Southeast region (green or brown - the most representative samples). The dry extract content (% g/mL), oxidation index (seconds), total flavonoids, and phenolics (% m/m) of each sample were compared with legislation. We conclude that using the UHPLC-PDA method and the investigation that allowed the comparison with the current legislation efficiently practical problems in the commercialization of propolis extracts. However, of the 17 analyzed samples, 6 did not meet the desired the recognized standards, denoting a lack of supervision and efficient quality control, which highlights a dangerous situation regarding the commercialization of this critical product used in several industrial fields, mainly in the food and pharmaceutical sector.


Assuntos
Própole , Brasil , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Preparações Farmacêuticas , Fenóis/análise , Extratos Vegetais , Própole/farmacologia , Controle de Qualidade , Padrões de Referência , Sabões/análise , Solventes , Espectrometria de Massas em Tandem , Cremes Dentais/análise
6.
Crit Rev Anal Chem ; : 1-27, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993795

RESUMO

Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.

7.
Food Res Int ; 157: 111252, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761564

RESUMO

This work aimed to develop an integrated method to extract and fractionate phenolic compounds from lemon (Citrus limon L.) peel by in-line coupling pressurized liquid extraction and solid-phase extraction (PLE-SPE). The effect of the adsorbent used in the SPE (Sepra™ C18-E, Sepra™ NH2, and PoraPak Rxn), the combination of organic extraction-elution solvents (water-ethanol and water-ethyl lactate), extraction temperature (40-80 °C), and extraction water pH (4.0, 6.0, and 7.0) were the investigated variables. The highest yield and separation degree were observed using Sepra™ C18-E and the water-ethanol combination as the extraction solvent-eluent. Higher temperatures led to higher yields but negatively affected the retention of less polar compounds, hesperidin, and narirutin during the extraction step. The lower pH improved the yield of most evaluated compounds; however, it did not improve the adsorbent retention at high temperatures. Thus, the developed PLE-SPE method resulted in higher extraction yields from lemon peel, especially total less polar compounds (20.2100 ± 0,0050 mg/g) and hesperidin (12.8120 ± 0.0006 mg/g) and allowed the separation of polar compounds and less polar compounds in distinct extract fractions. Besides, PLE-SPE resulted in higher yields compared to other extraction methods. The integrated approach allowed obtaining extract fractions with different chemical composition through an environmentally friendly procedure. The research outcomes may be helpful for natural products chemistry, and industrial processes.


Assuntos
Citrus , Hesperidina , Etanol , Fenóis/química , Extração em Fase Sólida , Solventes/química , Água
8.
Food Res Int ; 157: 111381, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761637

RESUMO

This work evaluated two emerging techniques in extracting phenolic compounds from Tahiti lime pomace - pressurized liquid extraction (PLE) and ultrasound-assisted extraction (UAE). PLE was performed at different temperatures (60 - 110 °C) and times (5 - 40 min), and UAE was carried out varying ultrasound power (160 - 792 W), time (2 - 10 min), and solvent to feed mass ratio (20 - 40 kg solvent/kg dried pomace). Both used ethanol and water (3:1, wt.) as the solvent. The effects of these variables were evaluated on global extraction yield, polyphenols, hesperidin, narirutin yields, and antioxidant capacity. PLE was strongly affected by temperature and extraction time, and the highest temperature (110 °C) provided the best results for global yield, total phenolic, and ORAC, except for hesperidin and narirutin, which were not significative affected by temperature. UAE revealed a weak dependency on power, S/F, and time; however, the lowest power level significantly increased the yields compared to no power application. Thus, P = 480 W, t = 6 min, and S/F = 30 was chosen as the best condition in the UAE in terms of overall extraction yield, total phenolics, specific phenolics, antioxidant capacities, and solvent and energy expenditures. UAE mechanisms were investigated by comparing with heated and stirred maceration, and scanning electron microscopy suggested that total phenolic yield was influenced by mechanisms that only ultrasound can provide. Micrographics confirmed the cavitation effect on Tahiti lime pomace particles' surface. To sum up, PLE resulted in the highest yields and antioxidant capacity, followed by UAE.


Assuntos
Antioxidantes/química , Citrus , Hesperidina , Compostos de Cálcio/química , Hesperidina/química , Hesperidina/isolamento & purificação , Óxidos/química , Fenóis/química , Fenóis/isolamento & purificação , Solventes
9.
Food Chem X ; 14: 100262, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35243328

RESUMO

In this work, a method based on ultra-high-performance liquid chromatography with a photodiode array detector (UPLC-PDA) was developed to comprehensively analyze phenolic compounds in peels of lime (Citrus × latifolia), lemon (Citrus limon), and rangpur lime (Citrus × limonia). The reverse-phase separation was achieved with a C18 fused-core column packed with the smallest particles commercially available (1.3 um). The method was successfully coupled with high-resolution mass spectrometry (HRMS), allowing the detection of 24 phenolic compounds and five limonoids in several other citrus peels species: key lime, orange and sweet orange, tangerine, and tangerine ponkan, proving the suitability for comprehensive analysis in citrus peel matrices. Additionally, the developed method was validated according to the Food and drug administration (FDA) and National Institute of Metrology Quality and Technology (INMETRO) criteria, demonstrating specificity, linearity, accuracy, and precision according to these guidelines. System suitability parameters such as resolution, tailoring, plate count were also verified.

10.
Food Chem X ; 12: 100133, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34632369

RESUMO

Apple is one of the most consumed fruits worldwide and has recognized nutritional properties. Besides being consumed fresh, it is the raw material for several food products, whose production chain generates a considerable amount of by-products that currently have an underestimated use. These by-products are a rich source of chemical compounds with several potential applications. Therefore, new ambitious platforms focused on reusing are needed, targeting a process chain that achieves well-defined products and mitigates waste generation. This review covers an essential part of the apple by-products reuse chain. The apple composition regarding phenolic compounds subclasses is addressed and related to biological activities. The extraction processes to recover apple biocompounds have been revised, and an up-to-date overview of the scientific literature on conventional and emerging extraction techniques adopted over the past decade is reported. Finally, gaps and future trends related to the management of apple by-products are critically presented.

11.
Anal Chim Acta ; 1178: 338845, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482871

RESUMO

The comprehensive analysis of phenolic compounds from natural products comprises critical steps, including quantitative extraction, extract preparation, and chromatographic procedure. Performing these steps off-line requires a long time to obtain results, besides being laborious and more error-prone. This work discusses the concept and presents the details of assembling and validating a new system to comprehensively analyze phenolic compounds in natural products. The system is based on a bidimensional separation through the combination of pressurized liquid extraction with in-line solid-phase extraction coupled online with HPLC-PDA. The system proved to be able to perform a bidimensional separation to characterize the sample and ensure quantitative extraction of all detected components using the most appropriate extraction solvent gradient depending on the raw sample analyzed. The 1st dimension separation is achieved by PLE-SPE with a solvent gradient and differential interactions of extracted compounds with the adsorbent. The 2nd dimension presents the HPLC-PDA separation. The extraction/separation process can be monitored in real-time, and kinetic extraction curves for individual compounds can also be obtained to ensure quantitative extraction. Thus, the 2D PLE-SPE × HPLC-PDA may provide fast and precise comprehensive analyses of a large plethora of phenolic compounds, finding relevant applications in the chemical, food, pharmaceutical, and agricultural fields.


Assuntos
Produtos Biológicos , Cromatografia Líquida de Alta Pressão , Fenóis/análise , Extração em Fase Sólida , Solventes
12.
Food Chem (Oxf) ; 2: 100008, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415638

RESUMO

The in-line coupling of the pressurized liquid extraction with a solid-phase adsorbent and a UV-Vis detector for the simultaneous extraction and separation of bioactive compounds from yerba mate (PLE-SPE-UV) was carried out in two stages. In the first stage, water was used as a solvent, while in the second stage, ethanol was used. For the optimization of the method, different adsorbents (Sepra C18-E, Isolute C18-EC, and Strata-X C18), temperatures (40-80 °C), solvent flow-rate (1-3 mL/min), and pH (4.0 and 8.0) were evaluated. By using a UV-Vis detector on-line, it is possible to monitor the process in real-time. The developed method allowed obtaining similar or higher recoveries of all the compounds classes than other methods, such as ultrasound-assisted extraction, stirring, maceration, and pressurized liquid extraction alone, in addition to separating them into fractions. The developed method could be used as sample preparation for the analysis of different compounds classes from mate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...