Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e13005, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793958

RESUMO

The use of secondary aluminum alloys in industry is still limited by the high Fe contents in recycled alloys. In general, the Fe-rich intermetallic compounds deteriorate the performance of secondary Al-Si alloys, specially the ß-Fe phase. To mitigate the detrimental effects of iron, the influence of diferent cooling rates and holding temperatures on the modification and purification of iron-rich compounds in commercial AlSi10MnMg alloy with 1.1 wt % Fe was studied. According to the results obtained by CALPHAD calculations, the alloy was modified by adding a 0.7 wt%, 1.2 wt%. and 2.0 wt% of Mn. The phase formation and morphology of iron-rich compounds was systematically studied and correlated by different microstructural characterization techniques. The experimental results showed that the detrimental ß-Fe phase can be avoided by adding at least 1.2 wt % of Mn at the studied cooling rates. Finally, the effect of different holding temperatures in the sedimentation of Fe-rich compounds also was studied. Hence, the gravitational sedimentation experiments at different holding times and temperatures were conducted to validate the feasibility of the methodology in different processing conditions. The experimental results showed a high Fe removal efficiency up to 64% and 61%, after a holding time of 30 min at 600 °C and 670 °C, respectively. The addition of Mn improved the Fe removal efficiency but not gradually, as the best results were obtained in the alloy containing 1.2 wt % Mn.

2.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676369

RESUMO

Metal additive manufacturing technologies are gaining great interest. However, the existing metallic alloys are generally formulated for conventional manufacturing processes. Thus, it is necessary to adapt their chemical composition or develop new alloys for the manufacturing conditions of additive manufacturing processes. The main method for manufacturing metal powder is gas atomization, but it is very expensive with long manufacturing times. Therefore, it is necessary to develop alloy validation methods that simplify the development process of new alloys. This paper deals with a methodology based on thermodynamic heat transfer equations, simulation, and powderless tests. This novel methodology enabled the determination of the optimal conditions for the laser melting deposition process of the commercial AA7075 alloy with a reduced number of experimental tests with powder, reducing the difficulties inherent to powder processing. The developed process was divided into two stages. In the first stage, the heating of the substrate was studied. In the second stage, the depositions of single tracks were validated with the parameters extrapolated from the previous stage. Hence, it was possible to manufacture single tracks free of cracks with an adequate aspect ratio.

3.
Sci Rep ; 9(1): 6792, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043686

RESUMO

In this work, the design, microstructures and mechanical properties of five novel non-equiatomic lightweight medium entropy alloys were studied. The manufactured alloys were based on the Al65Cu5Mg5Si15Zn5X5 and Al70Cu5Mg5Si10Zn5X5 systems. The formation and presence of phases and microstructures were studied by introducing Fe, Ni, Cr, Mn and Zr. The feasibility of CALPHAD method for the design of new alloys was studied, demonstrating to be a good approach in the design of medium entropy alloys, due to accurate prediction of the phases, which were validated via X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. In addition, the alloys were manufactured using an industrial-scale die-casting process to make the alloys viable as engineering materials. In terms of mechanical properties, the alloys exhibited moderate plastic deformation and very high compressive strength up to 644 MPa. Finally, the reported microhardness value was in the range of 200 HV0.1 to 264 HV0.1, which was two to three times higher than those of commercial Al alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...