Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112814, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37490905

RESUMO

Infections cause catabolism of fat and muscle stores. Traditionally, studies have focused on understanding how the innate immune system contributes to energy stores wasting, while the role of the adaptive immune system remains elusive. In the present study, we examine the role of the adaptive immune response in adipose tissue wasting and cachexia using a murine model of the chronic parasitic infection Trypanosoma brucei, the causative agent of sleeping sickness. We find that the wasting response occurs in two phases, with the first stage involving fat wasting caused by CD4+ T cell-induced anorexia and a second anorexia-independent cachectic stage that is dependent on CD8+ T cells. Fat wasting has no impact on host antibody-mediated resistance defenses or survival, while later-stage muscle wasting contributes to disease-tolerance defenses. Our work reveals a decoupling of adaptive immune-mediated resistance from the catabolic response during infection.


Assuntos
Neoplasias , Doenças Parasitárias , Animais , Camundongos , Caquexia/metabolismo , Anorexia/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Neoplasias/metabolismo , Tecido Adiposo/metabolismo , Doenças Parasitárias/complicações , Doenças Parasitárias/metabolismo
2.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993409

RESUMO

Disease tolerance is a defense strategy essential for survival of infections, limiting physiological damage without killing the pathogen. The disease course and pathology a pathogen may cause can change over the lifespan of a host due to the structural and functional physiological changes that accumulate with age. Since successful disease tolerance responses require the host to engage mechanisms that are compatible with the disease course and pathology caused by an infection, we predicted that this defense strategy would change with age. Animals infected with a lethal dose 50 (LD50) of a pathogen often display distinct health and sickness trajectories due to differences in disease tolerance, and thus can be used to delineate tolerance mechanisms. Using a polymicrobial sepsis model, we found that despite having the same LD50, old and young susceptible mice exhibited distinct disease courses. Young survivors employed a cardioprotective mechanism via FoxO1-mediated regulation of the ubiquitin-proteosome system that was necessary for survival and protection from cardiomegaly. This same mechanism was a driver of sepsis pathogenesis in aged hosts, causing catabolic remodeling of the heart and death. Our findings have implications for the tailoring of therapy to the age of an infected individual and suggest that disease tolerance alleles may exhibit antagonistic pleiotropy.

3.
Infect Immun ; 90(9): e0024222, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35924898

RESUMO

To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.


Assuntos
Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Interações Hospedeiro-Patógeno , Humanos , Leptina/metabolismo , Lipídeos , Yersinia pseudotuberculosis/metabolismo
4.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100182

RESUMO

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Ferro/metabolismo , Virulência/fisiologia , Animais , Infecções Assintomáticas , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Colite/tratamento farmacológico , Colite/metabolismo , Colo/microbiologia , Suplementos Nutricionais , Infecções por Enterobacteriaceae/tratamento farmacológico , Feminino , Resistência à Insulina/fisiologia , Intestino Delgado/microbiologia , Ferro/farmacologia , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...