Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116466, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850736

RESUMO

Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the 'smell' of the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 'synthetic lung cancer' vs. 'synthetic healthy' human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably with exceedingly high accuracy (93-100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a sensitive biological gas sensor to detect human lung cancer.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias Pulmonares , Olfato , Humanos , Animais , Neoplasias Pulmonares/patologia , Abelhas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Olfato/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Odorantes/análise , Testes Respiratórios/métodos , Testes Respiratórios/instrumentação , Carcinoma de Pequenas Células do Pulmão/patologia , Compostos Orgânicos Voláteis/análise
2.
Methods Mol Biol ; 2592: 185-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36507994

RESUMO

Human islet transplantation is a promising therapy to restore normoglycemia for type 1 diabetes (T1D). Despite recent advances, human islet transplantation remains suboptimal due to significant islet graft loss after transplantation. Various immunological and nonimmunological factors contribute to this loss therefore signifying a need for strategies and approaches for visualizing and monitoring transplanted human islet grafts. One such imaging approach is magnetic particle imaging (MPI), an emerging imaging modality that detects the magnetization of iron oxide nanoparticles. MPI is known for its specificity due to its high image contrast and sensitivity. MPI through its noninvasive nature provides the means for monitoring transplanted human islets in real time. Here we summarize an approach to track transplanted human islets using MPI. We label human islet from donors with dextran-coated ferucarbotran iron oxide nanoparticles, transplant the labeled human islet into under the left kidney capsule, and image graft cells using an MPI scanner. We engineer a K-means++, clustering-based unsupervised machine learning algorithm for standardized image segmentation and iron quantification of the MPI, which solves problems with selection bias and indiscriminate signal boundary that accompanies this newer imaging modality. In this chapter, we summarize the methods of this emerging imaging modality of MPI in conjunction with unsupervised machine learning to monitor and visualize islets after transplantation.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Transplante das Ilhotas Pancreáticas/métodos , Aprendizado de Máquina , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...