Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 896: 165293, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37414188

RESUMO

Contaminated groundwater is a serious problem in developed countries. The abandonment of industrial waste may lead to acid drainage affecting groundwater and severely impacting the environment and urban infrastructure. We examined the hydrogeology and hydrochemistry of an urban area in Almozara (Zaragoza, Spain); built over an old industrial zone, with pyrite roasting waste deposits, there were acid drainage problems in underground car parks. Drilling and piezometer construction, and groundwater samples revealed the existence of a perched aquifer within old sulfide mill tailings, where the building basements interrupted groundwater flow, leading to a water stagnation zone that reached extreme acidity values (pH < 2). A groundwater flow reactive transport model was developed using PHAST to reproduce flow and groundwater chemistry, in order to be used as a predictive tool for guiding remediation actions. The model reproduced the measured groundwater chemistry by simulating the kinetically controlled pyrite and portlandite dissolution. The model predicts that an extreme acidity front (pH < 2), coincident with the Fe (III) pyrite oxidation mechanism taking dominance, is propagating by 30 m/year if constant flow is assumed. The incomplete dissolution of residual pyrite (up to 18 % dissolved) predicted by the model indicates that the acid drainage is limited by the flow regime rather than sulfide availability. The installation of additional water collectors between the recharge source and the stagnation zone has been proposed, together with periodic pumping of the stagnation zone. The study findings are expected to serve as a useful background for the assessment of acid drainage in urban areas, since urbanization of old industrial land is rapidly increasing worldwide.

2.
Sci Total Environ ; 572: 1047-1058, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522282

RESUMO

As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values.


Assuntos
Energia Geotérmica , Água Subterrânea/análise , Temperatura Alta , Metais Pesados/análise , Poluentes Químicos da Água/análise , Cidades , Monitoramento Ambiental , Espanha , Estatísticas não Paramétricas , Oligoelementos/análise
3.
Sci Total Environ ; 485-486: 575-587, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747249

RESUMO

The extensive implementation of ground source heat pumps in urban aquifers is an important issue related to groundwater quality and the future economic feasibility of existent geothermal installations. Although many cities are in the immediate vicinity of large rivers, little is known about the thermal river-groundwater interaction at a kilometric-scale. The aim of this work is to evaluate the thermal impact of river water recharges induced by flood events into an urban alluvial aquifer anthropogenically influenced by geothermal exploitations. The present thermal state of an urban aquifer at a regional scale, including 27 groundwater heat pump installations, has been evaluated. The thermal impacts of these installations in the aquifer together with the thermal impacts from "cold" winter floods have also been spatially and temporally evaluated to ensure better geothermal management of the aquifer. The results showed a variable direct thermal impact from 0 to 6 °C depending on the groundwater-surface water interaction along the river trajectory. The thermal plumes far away from the riverbed also present minor indirect thermal impacts due to hydraulic gradient variations.


Assuntos
Água Subterrânea/química , Temperatura Alta , Rios/química , Cidades , Monitoramento Ambiental , Inundações , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...