Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370626

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a 'genetic priming' method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor IRF1 (interferon response factor 1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFNγ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFNγ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.

2.
Adv Mater ; 35(21): e2205709, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871193

RESUMO

Fibrosis remains a significant cause of failure in implanted biomedical devices and early absorption of proteins on implant surfaces has been shown to be a key instigating factor. However, lipids can also regulate immune activity and their presence may also contribute to biomaterial-induced foreign body responses (FBR) and fibrosis. Here it is demonstrated that the surface presentation of lipids on implant affects FBR by influencing reactions of immune cells to materials as well as their resultant inflammatory/suppressive polarization. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) is employed to characterize lipid deposition on implants that are surface-modified chemically with immunomodulatory small molecules. Multiple immunosuppressive phospholipids (phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin) are all found to deposit preferentially on implants with anti-FBR surface modifications in mice. Significantly, a set of 11 fatty acids is enriched on unmodified implanted devices that failed in both mice and humans, highlighting relevance across species. Phospholipid deposition is also found to upregulate the transcription of anti-inflammatory genes in murine macrophages, while fatty acid deposition stimulated the expression of pro-inflammatory genes. These results provide further insights into how to improve the design of biomaterials and medical devices to mitigate biomaterial material-induced FBR and fibrosis.


Assuntos
Corpos Estranhos , Reação a Corpo Estranho , Humanos , Camundongos , Animais , Materiais Biocompatíveis/química , Fibrose , Lipídeos
3.
Cell Mol Bioeng ; 15(5): 425-437, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36444347

RESUMO

Introduction: While hydrogel encapsulation of cells has been developed to treat multiple diseases, methods to cryopreserve and maintain the composite function of therapeutic encapsulated cell products are still needed to facilitate their storage and distribution. While methods to preserve encapsulated cells, and post-synthesis have received recent attention, effective preservation mediums have not been fully defined. Methods: We employed a two-tiered screen of an initial library of 32 different cryopreservation agent (CPA) formulations composed of different cell-permeable and impermeable agents. Formulations were assayed using dark field microscopy to evaluate alginate hydrogel matrix integrity, followed by cell viability analyses and measurements of functional secretion activity. Results: The structural integrity of large > 1 mm alginate capsules were highly sensitive to freezing and thawing in media alone but could be recovered by a number of CPA formulations containing different cell-permeable and impermeable agents. Subsequent viability screens identified two top-performing CPA formulations that maximized capsule integrity and cell viability after storage at - 80 °C. The top formulation (10% Dimethyl sulfoxide (DMSO) and 0.3 M glucose) was demonstrated to preserve hydrogel integrity and retain cell viability beyond a critical USA FDA set 70% viability threshold while maintaining protein secretion and resultant cell potency. Conclusions: This prioritized screen identified a cryopreservation solution that maintains the integrity of large alginate capsules and yields high viabilities and potency. Importantly, this formulation is serum-free, non-toxic, and can support the development of clinically translatable encapsulated cell-based therapeutics. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00739-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...