Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929988

RESUMO

Functional near-infrared spectroscopy (fNIRS) is a portable neuroimaging methodology, more robust to motion and more cost-effective than functional magnetic resonance imaging (fMRI), which makes it highly suitable for conducting naturalistic studies of brain function and for use with developmental and clinical populations. Both fNIRS and fMRI methodologies detect changes in cerebral blood oxygenation during functional brain activation, and prior studies have shown high spatial and temporal correspondence between the two signals. There is, however, no quantitative comparison of the two signals collected simultaneously from the same subjects with whole-head fNIRS coverage. This comparison is necessary to comprehensively validate area-level activations and functional connectivity against the fMRI gold standard, which in turn has the potential to facilitate comparisons of the two signals across the lifespan. We address this gap by describing a protocol for simultaneous data collection of fMRI and fNIRS signals that: i) provides whole-head fNIRS coverage; ii) includes short-distance measurements for regression of the non-cortical, systemic physiological signal; and iii) implements two different methods for optode-to-scalp co-registration of fNIRS measurements. fMRI and fNIRS data from three subjects are presented, and recommendations for adapting the protocol to test developmental and clinical populations are discussed. The current setup with adults allows scanning sessions for an average of approximately 40 min, which includes both functional and structural scans. The protocol outlines the steps required to adapt the fNIRS equipment for use in the magnetic resonance (MR) environment, provides recommendations for both data recording and optode-to-scalp co-registration, and discusses potential modifications of the protocol to fit the specifics of the available MR-safe fNIRS system. Representative subject-specific responses from a flashing-checkerboard task illustrate the feasibility of the protocol to measure whole-head fNIRS signals in the MR environment. This protocol will be particularly relevant for researchers interested in validating fNIRS signals against fMRI across the lifespan.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem , Couro Cabeludo
2.
Brain Lang ; 224: 105047, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894429

RESUMO

Understanding language neurobiology in early childhood is essential for characterizing the developmental structural and functional changes that lead to the mature adult language network. In the last two decades, the field of language neurodevelopment has received increasing attention, particularly given the rapid advances in the implementation of neuroimaging techniques and analytic approaches that allow detailed investigations into the developing brain across a variety of cognitive domains. These methodological and analytical advances hold the promise of developing early markers of language outcomes that allow diagnosis and clinical interventions at the earliest stages of development. Here, we argue that findings in language neurobiology need to be integrated within an approach that captures the dynamic nature and inherent variability that characterizes the developing brain and the interplay between behavior and (structural and functional) neural patterns. Accordingly, we describe a framework for understanding language neurobiology in early development, which minimally requires an explicit characterization of the following core domains: i) computations underlying language learning mechanisms, ii) developmental patterns of change across neural and behavioral measures, iii) environmental variables that reinforce language learning (e.g., the social context), and iv) brain maturational constraints for optimal neural plasticity, which determine the infant's sensitivity to learning from the environment. We discuss each of these domains in the context of recent behavioral and neuroimaging findings and consider the need for quantitatively modeling two main sources of variation: individual differences or trait-like patterns of variation and within-subject differences or state-like patterns of variation. The goal is to enable models that allow prediction of language outcomes from neural measures that take into account these two types of variation. Finally, we examine how future methodological approaches would benefit from the inclusion of more ecologically valid paradigms that complement and allow generalization of traditional controlled laboratory methods.


Assuntos
Idioma , Neurobiologia , Adulto , Encéfalo/diagnóstico por imagem , Pré-Escolar , Humanos , Individualidade , Lactente , Neuroimagem
3.
Neuroimage ; 229: 117630, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401011

RESUMO

Cognitive states, such as rest and task engagement, share an 'intrinsic' functional network organization that is subject to minimal variation over time and yields stable signatures within an individual. Importantly, there are also transient state-specific functional connectivity (FC) patterns that vary across neural states. Here, we examine functional brain organization differences that underlie distinct states in a cross-sectional developmental sample. We compare FC fMRI data acquired during naturalistic viewing (i.e., movie-watching) and resting-state paradigms in a large cohort of 157 children and young adults aged 6-20. Naturalistic paradigms are commonly implemented in pediatric research because they maintain the child's attention and contribute to reduced head motion. It remains unknown, however, to what extent the brain-wide functional network organization is comparable during movie-watching and rest across development. Here, we identify a widespread FC pattern that predicts whether individuals are watching a movie or resting. Specifically, we develop a model for prediction of multilevel neural effects (termed PrimeNet), which can with high reliability distinguish between movie-watching and rest irrespective of age and that generalizes across movies. In turn, we characterize FC patterns in the most predictive functional networks for movie-watching versus rest and show that these patterns can indeed vary as a function of development. Collectively, these effects highlight a 'core' FC pattern that is robustly associated with naturalistic viewing, which also exhibits change across age. These results, focused here on naturalistic viewing, provide a roadmap for quantifying state-specific functional neural organization across development, which may reveal key variation in neurodevelopmental trajectories associated with behavioral phenotypes.


Assuntos
Encéfalo/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/crescimento & desenvolvimento , Estimulação Luminosa/métodos , Descanso/fisiologia , Percepção Visual/fisiologia , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Bases de Dados Factuais/tendências , Feminino , Previsões , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Filmes Cinematográficos/tendências , Rede Nervosa/diagnóstico por imagem , Descanso/psicologia , Adulto Jovem
4.
Dev Cogn Neurosci ; 45: 100855, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32942148

RESUMO

A key goal of human neurodevelopmental research is to map neural and behavioral trajectories across both health and disease. A growing number of developmental consortia have begun to address this gap by providing open access to cross-sectional and longitudinal 'big data' repositories. However, it remains challenging to develop models that enable prediction of both within-subject and between-subject neurodevelopmental variation. Here, we present a conceptual and analytical perspective of two essential ingredients for mapping neurodevelopmental trajectories: state and trait components of variance. We focus on mapping variation across a range of neural and behavioral measurements and consider concurrent alterations of state and trait variation across development. We present a quantitative framework for combining both state- and trait-specific sources of neurobehavioral variation across development. Specifically, we argue that non-linear mixed growth models that leverage state and trait components of variance and consider environmental factors are necessary to comprehensively map brain-behavior relationships. We discuss this framework in the context of mapping language neurodevelopmental changes in early childhood, with an emphasis on measures of functional connectivity and their reliability for establishing robust neurobehavioral relationships. The ultimate goal is to statistically unravel developmental trajectories of neurobehavioral relationships that involve a combination of individual differences and age-related changes.


Assuntos
Encéfalo/fisiopatologia , Sistema Nervoso/crescimento & desenvolvimento , Estudos Transversais , Feminino , Humanos , Individualidade , Lactente , Recém-Nascido , Masculino , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...