Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 340, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974095

RESUMO

BACKGROUND: The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species, Oblada melanura and Diplodus annularis, over a year and collected their specific monogenean ectoparasites belonging to the Lamellodiscus genus. RESULTS: Our results revealed that diversity and structure of skin and gill mucus microbiota were strongly affected by seasonality, mainly by the variations of temperature, with specific fish-associated bacterial taxa for each season. The diversity and abundance of parasites were also influenced by seasonality, with the abundance of some Lamellodiscus species significantly correlated to temperature. Numerous positive and negative correlations between the abundance of given bacterial genera and Lamellodiscus species were observed throughout the year, suggesting their differential interaction across seasons. CONCLUSIONS: The present study is one of the first to demonstrate the influence of seasonality and related abiotic factors on fish external microbiota over a year. We further identified potential interactions between gill microbiota and parasite occurrence in wild fish populations, improving current knowledge and understanding of the establishment of host-specificity.


Assuntos
Doenças dos Peixes , Microbiota , Parasitos , Perciformes , Trematódeos , Animais , Projetos Piloto , Peixes , Bactérias/genética , Doenças dos Peixes/epidemiologia
2.
Genome Biol Evol ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220646

RESUMO

Although duplications have long been recognized as a fundamental process driving major evolutionary innovations, direct estimates of spontaneous chromosome duplication rates, leading to aneuploid karyotypes, are scarce. Here, from mutation accumulation (MA) experiments, we provide the first estimates of spontaneous chromosome duplication rates in six unicellular eukaryotic species, which range from 1 × 10-4 to 1 × 10-3 per genome per generation. Although this is ∼5 to ∼60 times less frequent than spontaneous point mutations per genome, chromosome duplication events can affect 1-7% of the total genome size. In duplicated chromosomes, mRNA levels reflected gene copy numbers, but the level of translation estimated by polysome profiling revealed that dosage compensation must be occurring. In particular, one duplicated chromosome showed a 2.1-fold increase of mRNA but translation rates were decreased to 0.7-fold. Altogether, our results support previous observations of chromosome-dependent dosage compensation effects, providing evidence that compensation occurs during translation. We hypothesize that an unknown posttranscriptional mechanism modulates the translation of hundreds of transcripts from genes located on duplicated regions in eukaryotes.


Assuntos
Duplicação Cromossômica , Genoma , Humanos , Dosagem de Genes , Cromossomos/genética , RNA Mensageiro/genética , Duplicação Gênica
3.
Anim Microbiome ; 4(1): 27, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418308

RESUMO

BACKGROUND: Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species. However, our understanding of external microbial assemblages, in particular regarding the factors that determine their composition and potential interactions with parasites, is still limited. This is the objective of the present study that focuses on a well-known fish-parasite interaction, involving the Sparidae (Teleostei), and their specific monogenean ectoparasites of the Lamellodiscus genus. We characterized the skin and gill mucus bacterial communities using a 16S rRNA amplicon sequencing, tested how fish ecological traits and host evolutionary history are related to external microbiota, and assessed if some microbial taxa are related to some Lamellodiscus species. RESULTS: Our results revealed significant differences between skin and gill microbiota in terms of diversity and structure, and that sparids establish and maintain tissue and species-specific bacterial communities despite continuous exposure to water. No phylosymbiosis pattern was detected for either gill or skin microbiota, suggesting that other host-related and environmental factors are a better regulator of host-microbiota interactions. Diversity and structure of external microbiota were explained by host traits: host species, diet and body part. Numerous correlations between the abundance of given bacterial genera and the abundance of given Lamellodiscus species have been found in gill mucus, including species-specific associations. We also found that the external microbiota of the only unparasitized sparid species in this study, Boops boops, harbored significantly more Fusobacteria and three genera, Shewenella, Cetobacterium and Vibrio, compared to the other sparid species, suggesting their potential involvement in preventing monogenean infection. CONCLUSIONS: This study is the first to explore the diversity and structure of skin and gill microbiota from a wild fish family and present novel evidence on the links between gill microbiota and monogenean species in diversity and abundance, paving the way for further studies on understanding host-microbiota-parasite interactions.

4.
Int J Parasitol ; 52(8): 559-567, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358503

RESUMO

Monogeneans are highly diverse fish ectoparasites with a direct life cycle, widely distributed, and are known to generally display strict host specificity. Factors related to the hosts and the parasite have been suggested to explain this high specificity. Monogeneans have also been observed to colonise fish species not in their natural host range under experimental conditions. We developed a specific metabarcoding protocol and applied it on the Sparidae-Lamellodiscus host-parasite system, to assess parasite diversity on skin and gills of several sparid host species. We first demonstrated that the use of a metabarcoding approach provided a better understanding of the diversity of monogeneans associated with teleost skin and gills than traditional approaches based on morphological identification. We identified a high diversity of both expected and unexpected (never observed on this host species) Lamellodiscus spp. on each host species and on skin and gills. No significant difference in parasite diversity was found between skin and gills. These results suggest that the establishment of the observed host specificity in monogeneans relies on multiple levels of regulation, involving the survival capacity of the larvae and host recognition mechanisms.


Assuntos
Doenças dos Peixes , Perciformes , Trematódeos , Animais , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Brânquias/parasitologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Perciformes/parasitologia , Especificidade da Espécie , Trematódeos/fisiologia
5.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599324

RESUMO

Although sex is now accepted as a ubiquitous and ancestral feature of eukaryotes, direct observation of sex is still lacking in most unicellular eukaryotic lineages. Evidence of sex is frequently indirect and inferred from the identification of genes involved in meiosis from whole genome data and/or the detection of recombination signatures from genetic diversity in natural populations. In haploid unicellular eukaryotes, sex-related chromosomes are named mating-type (MTs) chromosomes and generally carry large genomic regions where recombination is suppressed. These regions have been characterized in Fungi and Chlorophyta and determine gamete compatibility and fusion. Two candidate MT+ and MT- alleles, spanning 450-650 kb, have recently been described in Ostreococcus tauri, a marine phytoplanktonic alga from the Mamiellophyceae class, an early diverging branch in the green lineage. Here, we investigate the architecture and evolution of these candidate MT+ and MT- alleles. We analyzed the phylogenetic profile and GC content of MT gene families in eight different genomes whose divergence has been previously estimated at up to 640 Myr, and found evidence that the divergence of the two MT alleles predates speciation in the Ostreococcus genus. Phylogenetic profiles of MT trans-specific polymorphisms in gametologs disclosed candidate MTs in two additional species, and possibly a third. These Mamiellales MT candidates are likely to be the oldest mating-type loci described to date, which makes them fascinating models to investigate the evolutionary mechanisms of haploid sex determination in eukaryotes.


Assuntos
Clorófitas , Cromossomos Sexuais , Clorófitas/genética , Evolução Molecular , Genoma , Genômica , Filogenia , Cromossomos Sexuais/genética
6.
Microorganisms ; 9(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34442856

RESUMO

Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the 'opportunistic' behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions.

7.
Sci Adv ; 6(14): eaay2587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270031

RESUMO

Virus-microbe interactions in the ocean are commonly described by "boom and bust" dynamics, whereby a numerically dominant microorganism is lysed and replaced by a virus-resistant one. Here, we isolated a microalga strain and its infective dsDNA virus whose dynamics are characterized instead by parallel growth of both the microalga and the virus. Experimental evolution of clonal lines revealed that this viral production originates from the lysis of a minority of virus-susceptible cells, which are regenerated from resistant cells. Whole-genome sequencing demonstrated that this resistant-susceptible switch involved a large deletion on one chromosome. Mathematical modeling explained how the switch maintains stable microalga-virus population dynamics consistent with their observed growth pattern. Comparative genomics confirmed an ancient origin of this "accordion" chromosome despite a lack of sequence conservation. Together, our results show how dynamic genomic rearrangements may account for a previously overlooked coexistence mechanism in microalgae-virus interactions.


Assuntos
Genoma , Genômica , Interações Hospedeiro-Patógeno , Fitoplâncton/virologia , Simbiose , Algoritmos , Genômica/métodos , Microalgas/ultraestrutura , Microalgas/virologia , Modelos Teóricos , Fitoplâncton/ultraestrutura
8.
PLoS One ; 14(9): e0221475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31504055

RESUMO

Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales). These results highlighted that (1) the metabarcoding approach was able to uncover a large spectrum of symbiotic organisms associated to the fish species studied, (2) symbionts not yet identified in several teleost species were putatively present, (3) the parasitic diversity differed markedly across host species and (4) in most cases, the distribution of known parasitic genera within tissues is in accordance with the literature. The current work illustrates the large insights that can be gained by making maximum use of data from a metabarcoding approach.


Assuntos
Biodiversidade , Peixes/parasitologia , Metagenoma , Animais , Apicomplexa/genética , Artrópodes/genética , Ascomicetos/genética , Cilióforos/genética , Código de Barras de DNA Taxonômico/métodos , Peixes/microbiologia , Brânquias/microbiologia , Brânquias/parasitologia , Intestinos/microbiologia , Intestinos/parasitologia , Metagenômica/métodos , Nematoides/genética , Pele/microbiologia , Pele/parasitologia , Simbiose
9.
Genome Biol Evol ; 11(7): 1829-1837, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31218358

RESUMO

Mutations are the origin of genetic diversity, and the mutation rate is a fundamental parameter to understand all aspects of molecular evolution. The combination of mutation-accumulation experiments and high-throughput sequencing enabled the estimation of mutation rates in most model organisms, but several major eukaryotic lineages remain unexplored. Here, we report the first estimation of the spontaneous mutation rate in a model unicellular eukaryote from the Stramenopile kingdom, the diatom Phaeodactylum tricornutum (strain RCC2967). We sequenced 36 mutation accumulation lines for an average of 181 generations per line and identified 156 de novo mutations. The base substitution mutation rate per site per generation is µbs = 4.77 × 10-10 and the insertion-deletion mutation rate is µid = 1.58 × 10-11. The mutation rate varies as a function of the nucleotide context and is biased toward an excess of mutations from GC to AT, consistent with previous observations in other species. Interestingly, the mutation rates between the genomes of organelles and the nucleus differ, with a significantly higher mutation rate in the mitochondria. This confirms previous claims based on indirect estimations of the mutation rate in mitochondria of photosynthetic eukaryotes that acquired their plastid through a secondary endosymbiosis. This novel estimate enables us to infer the effective population size of P. tricornutum to be Ne∼8.72 × 106.


Assuntos
Diatomáceas/genética , Evolução Molecular , Mutagênese/genética , Mutagênese/fisiologia , Taxa de Mutação
10.
Genome Biol Evol ; 10(9): 2347-2365, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113623

RESUMO

While the molecular events involved in cell responses to heat stress have been extensively studied, our understanding of the genetic basis of basal thermotolerance, and particularly its evolution within the green lineage, remains limited. Here, we present the 13.3-Mb haploid genome and transcriptomes of a halotolerant and thermotolerant unicellular green alga, Picochlorum costavermella (Trebouxiophyceae) to investigate the evolution of the genomic basis of thermotolerance. Differential gene expression at high and standard temperatures revealed that more of the gene families containing up-regulated genes at high temperature were recently evolved, and less originated at the ancestor of green plants. Inversely, there was an excess of ancient gene families containing transcriptionally repressed genes. Interestingly, there is a striking overlap between the thermotolerance and halotolerance transcriptional rewiring, as more than one-third of the gene families up-regulated at 35 °C were also up-regulated under variable salt concentrations in Picochlorum SE3. Moreover, phylogenetic analysis of the 9,304 protein coding genes revealed 26 genes of horizontally transferred origin in P. costavermella, of which five were differentially expressed at higher temperature. Altogether, these results provide new insights about how the genomic basis of adaptation to halo- and thermotolerance evolved in the green lineage.


Assuntos
Clorófitas/genética , Evolução Molecular , Resposta ao Choque Térmico , Microalgas/genética , Aclimatação , Clorófitas/fisiologia , Regulação da Expressão Gênica de Plantas , Transferência Genética Horizontal , Genoma de Planta , Microalgas/fisiologia , Filogenia , Termotolerância , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...