Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 3(7): e1700239, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695208

RESUMO

Tiny photosynthetic microorganisms that form the picoplankton (between 0.3 and 3 µm in diameter) are at the base of the food web in many marine ecosystems, and their adaptability to environmental change hinges on standing genetic variation. Although the genomic and phenotypic diversity of the bacterial component of the oceans has been intensively studied, little is known about the genomic and phenotypic diversity within each of the diverse eukaryotic species present. We report the level of genomic diversity in a natural population of Ostreococcus tauri (Chlorophyta, Mamiellophyceae), the smallest photosynthetic eukaryote. Contrary to the expectations of clonal evolution or cryptic species, the spectrum of genomic polymorphism observed suggests a large panmictic population (an effective population size of 1.2 × 107) with pervasive evidence of sexual reproduction. De novo assemblies of low-coverage chromosomes reveal two large candidate mating-type loci with suppressed recombination, whose origin may pre-date the speciation events in the class Mamiellophyceae. This high genetic diversity is associated with large phenotypic differences between strains. Strikingly, resistance of isolates to large double-stranded DNA viruses, which abound in their natural environment, is positively correlated with the size of a single hypervariable chromosome, which contains 44 to 156 kb of strain-specific sequences. Our findings highlight the role of viruses in shaping genome diversity in marine picoeukaryotes.


Assuntos
Cromossomos , Variação Genética , Genética Populacional , Genômica , Fitoplâncton/genética , Suscetibilidade a Doenças , Evolução Molecular , Genômica/métodos , Mutação , Fenótipo , Filogenia , Fitoplâncton/classificação , Fitoplâncton/virologia , Polimorfismo de Nucleotídeo Único , Seleção Genética
2.
Front Microbiol ; 8: 1152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690598

RESUMO

Quorum sensing (QS) is a density-dependent mechanism allowing bacteria to synchronize their physiological activities, mediated by a wide range of signaling molecules including N-acyl-homoserine lactones (AHLs). Production of AHL has been identified in various marine strains of Proteobacteria. However, the chemical diversity of these molecules still needs to be further explored. In this study, we examined the diversity of AHLs produced by strain MOLA 401, a marine Alphaproteobacterium that belongs to the ubiquitous Rhodobacteraceae family. We combined an original biosensors-based guided screening of extract microfractions with liquid chromatography coupled to mass spectrometry (MS), High Resolution MS/MS and Nuclear Magnetic Resonance. This approach revealed the unsuspected capacity of a single Rhodobacteraceae strain to synthesize 20 different compounds, which are most likely AHLs. Also, some of these AHLs possessed original features that have never been previously observed, including long (up to 19 carbons) and poly-hydroxylated acyl side chains, revealing new molecular adaptations of QS to planktonic life and a larger molecular diversity than expected of molecules involved in cell-cell signaling within a single strain.

3.
Mol Biol Evol ; 34(7): 1770-1779, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379581

RESUMO

Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from µ = 4.4 × 10-10 to 9.8 × 10-10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates.


Assuntos
Clorófitas/genética , Fotossíntese/genética , Composição de Bases/genética , DNA Intergênico/genética , Eucariotos/genética , Evolução Molecular , Variação Genética , Genoma/genética , Mutação , Taxa de Mutação
4.
J Chem Ecol ; 42(12): 1201-1211, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27822708

RESUMO

The interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton host.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microalgas/fisiologia , Fitoplâncton/fisiologia , Percepção de Quorum , Biofilmes/crescimento & desenvolvimento , Feromônios/metabolismo
5.
Front Microbiol ; 7: 1414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656176

RESUMO

Microalgal-bacterial interactions are commonly found in marine environments and are well known in diatom cultures maintained in laboratory. These interactions also exert strong effects on bacterial and algal diversity in the oceans. Small green eukaryote algae of the class Mamiellophyceae (Chlorophyta) are ubiquitous and some species, such as Ostreococcus spp., are particularly important in Mediterranean coastal lagoons, and are observed as dominant species during phytoplankton blooms in open sea. Despite this, little is known about the diversity of bacteria that might facilitate or hinder O. tauri growth. We show, using rDNA 16S sequences, that the bacterial community found in O. tauri RCC4221 laboratory cultures is dominated by γ-proteobacteria from the Marinobacter genus, regardless of the growth phase of O. tauri RCC4221, the photoperiod used, or the nutrient conditions (limited in nitrogen or phosphorous) tested. Several strains of Marinobacter algicola were detected, all closely related to strains found in association with taxonomically distinct organisms, particularly with dinoflagellates and coccolithophorids. These sequences were more distantly related to M. adhaerens, M. aquaeoli and bacteria usually associated to euglenoids. This is the first time, to our knowledge, that distinct Marinobacter strains have been found to be associated with a green alga in culture.

6.
G3 (Bethesda) ; 6(7): 2063-71, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27175016

RESUMO

Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265-512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species.


Assuntos
Organismos Aquáticos/genética , Clorófitas/genética , Aptidão Genética , Taxa de Mutação , Adaptação Fisiológica/genética , Organismos Aquáticos/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Herbicidas/toxicidade , Concentração Osmolar , Cloreto de Sódio/farmacologia , Especificidade da Espécie , Estresse Fisiológico
7.
Genome Announc ; 2(5)2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25301648

RESUMO

Ruegeria halocynthiae MOLA R1/13b is an alphaproteobacterium isolated from the Mediterranean sea sponge Crambe crambe. We report here the genome sequence and its annotation, revealing the presence of quorum-sensing genes. This is the first report of the full genome of a Ruegeria halocynthiae strain.

8.
Genome Announc ; 2(5)2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25278539

RESUMO

Maribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius.

9.
Genome Biol Evol ; 5(8): 1503-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23873918

RESUMO

Along the green lineage (Chlorophyta and Streptophyta), mitochondria and chloroplast are mainly uniparentally transmitted and their evolution is thus clonal. The mode of organellar inheritance in their ancestor is less certain. The inability to make clear phylogenetic inference is partly due to a lack of information for deep branching organisms in this lineage. Here, we investigate organellar evolution in the early branching green alga Ostreococcus tauri using population genomics data from the complete mitochondrial and chloroplast genomes. The haplotype structure is consistent with clonal evolution in mitochondria, while we find evidence for recombination in the chloroplast genome. The number of recombination events in the genealogy of the chloroplast suggests that recombination, and thus biparental inheritance, is not rare. Consistent with the evidence of recombination, we find that the ratio of the number of nonsynonymous to the synonymous polymorphisms per site is lower in chloroplast than in the mitochondria genome. We also find evidence for the segregation of two selfish genetic elements in the chloroplast. These results shed light on the role of recombination and the evolutionary history of organellar inheritance in the green lineage.


Assuntos
Clorófitas/genética , Genoma de Cloroplastos , Genoma Mitocondrial , Estreptófitas/genética , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Recombinação Genética , Análise de Sequência de DNA
10.
Appl Environ Microbiol ; 79(2): 631-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144143

RESUMO

In this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O. tauri (based on genes involved in photosynthesis, cell cycle, and circadian clock) were compared using 96-well culture microplates and a luminometer to automatically measure luminescence over 3 days. This was compared to growth inhibition of O. tauri wild type under the same conditions. Luminescence appeared to be more sensitive than growth inhibition as an indicator of toxicity. Cyclin-dependent kinase (CDKA), a protein involved in the cell cycle, fused to luciferase (CDKA-Luc) was found to be the most sensitive of the biosensors, allowing an accurate determination of the 50% effective concentration (EC(50)) after only 2 days (diuron, 5.65 ± 0.44 µg/liter; Irgarol 1015, 0.76 ± 0.10 µg/liter). The effects of the antifoulants on the CDKA-Luc biosensor were then compared to growth inhibition in natural marine phytoplankton. The effective concentrations of diuron and Irgarol 1051 were found to be similar, indicating that this biosensor would be suitable as a reliable ecotoxicological test. The advantage of this biosensor over cell growth inhibition testing is that the process can be easily automated and could provide a high-throughput laboratory approach to perform short-term toxicity tests. The ability to genetically transform and culture recombinant O. tauri gives it huge potential for screening many other toxic compounds.


Assuntos
Técnicas Biossensoriais/métodos , Clorófitas/genética , Clorófitas/metabolismo , Desinfetantes/análise , Água do Mar/química , Poluentes da Água/análise , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Diurona/análise , Luciferases/análise , Luciferases/genética , Luminescência , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Triazinas/análise
11.
Plant J ; 65(4): 578-88, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21235644

RESUMO

The marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue-light receptors such as aureochromes to absorb shorter-wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV-HK) that functions as a new class of eukaryotic blue-light receptor in the pico-phytoplanktonic cell Ostreococcus tauri. This LOV-HK is related to the large family of LOV-HKs found in prokaryotes. Phylogenetic analysis indicates that the LOV domains from LOV-HKs, including O. tauri LOV-HK, and phototropins (phot; plant and green algal LOV serine/threonine kinases) have different evolutionary histories. Photochemical analysis shows that the LOV domain of LOV-HK binds a flavin cofactor and absorbs blue light with a fast photocycle compared with its prokaryotic counterparts. Ostreococcus tauri LOV-HK expression is induced by blue light and is under circadian control. Further, both overexpression and downregulation of LOV-HK result in arrhythmia of the circadian reporter CCA1:Luc under constant blue light. In contrast, photochemical inactivation of O. tauri LOV-HK is without effect, demonstrating its importance for function of the circadian clock under blue light. Overexpression/downregulation of O. tauriLOV-HK alters CCA1 rhythmicity under constant red light, irrespective of LOV-HK's photochemical reactivity, suggesting that O. tauri LOV-HK also participates in regulation of the circadian clock independent of its blue-light-sensing property. Molecular characterization of O. tauri LOV-HK demonstrates that this type of photoreceptor family is not limited to prokaryotes.


Assuntos
Clorófitas/enzimologia , Relógios Circadianos , Fotorreceptores de Plantas/metabolismo , Fitoplâncton/enzimologia , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Clorófitas/efeitos da radiação , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Histidina Quinase , Luz , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Fitoplâncton/genética , Fitoplâncton/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...