Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 198(8): 1033-1042, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29671603

RESUMO

RATIONALE: The relationship between longitudinal lung function trajectories, chest computed tomography (CT) imaging, and genetic predisposition to chronic obstructive pulmonary disease (COPD) has not been explored. OBJECTIVES: 1) To model trajectories using a data-driven approach applied to longitudinal data spanning adulthood in the Normative Aging Study (NAS), and 2) to apply these models to demographically similar subjects in the COPDGene (Genetic Epidemiology of COPD) Study with detailed phenotypic characterization including chest CT. METHODS: We modeled lung function trajectories in 1,060 subjects in NAS with a median follow-up time of 29 years. We assigned 3,546 non-Hispanic white males in COPDGene to these trajectories for further analysis. We assessed phenotypic and genetic differences between trajectories and across age strata. MEASUREMENTS AND MAIN RESULTS: We identified four trajectories in NAS with differing levels of maximum lung function and rate of decline. In COPDGene, 617 subjects (17%) were assigned to the lowest trajectory and had the greatest radiologic burden of disease (P < 0.01); 1,283 subjects (36%) were assigned to a low trajectory with evidence of airway disease preceding emphysema on CT; 1,411 subjects (40%) and 237 subjects (7%) were assigned to the remaining two trajectories and tended to have preserved lung function and negligible emphysema. The genetic contribution to these trajectories was as high as 83% (P = 0.02), and membership in lower lung function trajectories was associated with greater parental histories of COPD, decreased exercise capacity, greater dyspnea, and more frequent COPD exacerbations. CONCLUSIONS: Data-driven analysis identifies four lung function trajectories. Trajectory membership has a genetic basis and is associated with distinct lung structural abnormalities.


Assuntos
Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/complicações , Fumar/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Progressão da Doença , Volume Expiratório Forçado , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória , Adulto Jovem
2.
Respir Res ; 18(1): 45, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28264721

RESUMO

BACKGROUND: Prior studies of clinical prognostication in idiopathic pulmonary fibrosis (IPF) using computed tomography (CT) have often used subjective analyses or have evaluated quantitative measures in isolation. This study examined associations between both densitometric and local histogram based quantitative CT measurements with pulmonary function test (PFT) parameters and mortality. In addition, this study sought to compare risk prediction scores that incorporate quantitative CT measures with previously described systems. METHODS: Forty six patients with biopsy proven IPF were identified from a registry of patients with interstitial lung disease at Brigham and Women's Hospital in Boston, MA. CT scans for each subject were visually scored using a previously published method. After a semi-automated method was used to segment the lungs from the surrounding tissue, densitometric measurements including the percent high attenuating area, mean lung density, skewness and kurtosis were made for the entirety of each patient's lungs. A separate, automated tool was used to detect and quantify the percent of lung occupied by interstitial lung features. These analyses were used to create clinical and quantitative CT based risk prediction scores, and the performance of these was compared to the performance of clinical and visual analysis based methods. RESULTS: All of the densitometric measures were correlated with forced vital capacity and diffusing capacity, as were the total amount of interstitial change and the percentage of interstitial change that was honeycombing measured using the local histogram method. Higher percent high attenuating area, higher mean lung density, lower skewness, lower kurtosis and a higher percentage of honeycombing were associated with worse transplant free survival. The quantitative CT based risk prediction scores performed similarly to the clinical and visual analysis based methods. CONCLUSIONS: Both densitometric and feature based quantitative CT measures correlate with pulmonary function test measures and are associated with transplant free survival. These objective measures may be useful for identifying high risk patients and monitoring disease progression. Further work will be needed to validate these measures and the quantitative imaging based risk prediction scores in other cohorts.


Assuntos
Absorciometria de Fóton/métodos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/mortalidade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Absorciometria de Fóton/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Boston/epidemiologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/patologia , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Prevalência , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Taxa de Sobrevida , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...