Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
2.
Bioessays ; 46(9): e2400033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39058907

RESUMO

B-cell Acute Lymphoblastic Leukemia (B-ALL) is the most common pediatric cancer, arising most often in children aged 2-5 years. This distinctive age distribution hints at an association between B-ALL development and disrupted immune system function during a susceptible period during childhood, possibly triggered by early exposure to infection. While cure rates for childhood B-ALL surpass 90% in high-income nations, survivors suffer from diminished quality of life due to the side effects of treatment. Consequently, understanding the origins and evolution of B-ALL, and how to prevent this prevalent childhood cancer, is paramount to alleviate this substantial health burden. This article provides an overview of our current understanding of the etiology of childhood B-ALL and explores how this knowledge can inform preventive strategies.


Assuntos
Progressão da Doença , Humanos , Criança , Pré-Escolar , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia de Células B/patologia
3.
Cancer Discov ; 14(3): 396-405, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426560

RESUMO

SUMMARY: The recognition of host genetic factors underlying susceptibility to hematopoietic malignancies has increased greatly over the last decade. Historically, germline predisposition was thought to primarily affect the young. However, emerging data indicate that hematopoietic malignancies that develop in people of all ages across the human lifespan can derive from germline predisposing conditions and are not exclusively observed in younger individuals. The age at which hematopoietic malignancies manifest appears to correlate with distinct underlying biological pathways. Progression from having a deleterious germline variant to being diagnosed with overt malignancy involves complex, multistep gene-environment interactions with key external triggers, such as infection and inflammatory stimuli, driving clonal progression. Understanding the mechanisms by which predisposed clones transform under specific pressures may reveal strategies to better treat and even prevent hematopoietic malignancies from occurring.Recent unbiased genome-wide sequencing studies of children and adults with hematopoietic malignancies have revealed novel genes in which disease-causing variants are of germline origin. This paradigm shift is spearheaded by findings in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) as well as acute lymphoblastic leukemia, but it also encompasses other cancer types. Although not without challenges, the field of genetic cancer predisposition is advancing quickly, and a better understanding of the genetic basis of hematopoietic malignancies risk affects therapeutic decisions as well as genetic counseling and testing of at-risk family members.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adulto , Criança , Humanos , Síndromes Mielodisplásicas/genética , Interação Gene-Ambiente , Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética
4.
Front Immunol ; 14: 1285743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901253

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) stands as the primary contributor to childhood cancer-related mortality on a global scale. The development of the most conventional forms of this disease has been proposed to be conducted by two different steps influenced by different types of risk factors. The first step is led by a genetic insult that is presumably acquired before birth that transforms a healthy cell into a preleukemic one, which is maintained untransformed until the second step takes place. This necessary next step to leukemia development will be triggered by different risk factors to which children are exposed after birth. Murine models that recap the stepwise progression of B-ALL have been instrumental in identifying environmental and genetic factors that contribute to disease risk. Recent evidence from these models has demonstrated that specific environmental risk factors, such as common infections or gut microbiome dysbiosis, induce immune stress, driving the transformation of preleukemic cells, and harboring genetic alterations, into fully transformed leukemic cells. Such models serve as valuable tools for investigating the mechanisms underlying preleukemic events and can aid in the development of preventive approaches for leukemia in child. Here, we discuss the existing knowledge, learned from mouse models, of the impact of genetic and environmental risk factors on childhood B-ALL evolution and how B-ALL prevention could be reached by interfering with preleukemic cells.


Assuntos
Leucemia de Células B , Leucemia Linfocítica Crônica de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Camundongos , Animais , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Fatores de Risco
5.
Nat Commun ; 14(1): 5159, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620322

RESUMO

The initial steps of B-cell acute lymphoblastic leukemia (B-ALL) development usually pass unnoticed in children. Several preclinical studies have shown that exposure to immune stressors triggers the transformation of preleukemic B cells to full-blown B-ALL, but how this takes place is still a longstanding and unsolved challenge. Here we show that dysregulation of innate immunity plays a driving role in the clonal evolution of pre-malignant Pax5+/- B-cell precursors toward leukemia. Transcriptional profiling reveals that Myd88 is downregulated in immune-stressed pre-malignant B-cell precursors and in leukemic cells. Genetic reduction of Myd88 expression leads to a significant increase in leukemia incidence in Pax5+/-Myd88+/- mice through an inflammation-dependent mechanism. Early induction of Myd88-independent Toll-like receptor 3 signaling results in a significant delay of leukemia development in Pax5+/- mice. Altogether, these findings identify a role for innate immunity dysregulation in leukemia, with important implications for understanding and therapeutic targeting of the preleukemic state in children.


Assuntos
Linfoma de Burkitt , Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animais , Camundongos , Células Precursoras de Linfócitos B , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
6.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511301

RESUMO

Cancer stem cells (CSCs) are now well-established as key players in tumor initiation, progression, and therapy resistance [...].


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia
8.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886910

RESUMO

Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a "multi-step" or "multi-hit" mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these "first-hits" occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic "hits" will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the "multi-step" process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.


Assuntos
Síndromes Mielodisplásicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Pré-Leucemia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pré-Leucemia/genética , Translocação Genética
9.
Trends Cancer ; 8(11): 887-889, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35871053

RESUMO

Preleukemic has been used to describe children with a propensity to develop B cell acute lymphoblastic leukemia (B-ALL). However, leukemia-predisposing mutations can also be present in differentiated cells unable to transform. We postulate that preleukemia should only be used when such mutations arise in progenitors capable of evolving to B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Pré-Leucemia , Criança , Humanos , Pré-Leucemia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Mutação
10.
Oncoscience ; 9: 17-19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479646
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA