Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Mol Biol ; 46(1 Suppl 2): e20220266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36880694

RESUMO

Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.

2.
Elife ; 112022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226828

RESUMO

The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo VI , Filogenia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Antibacterianos/farmacologia , Ilhas Genômicas , Escherichia coli/genética , Escherichia coli/metabolismo , Endonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...