Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
HLA ; 102(6): 671-689, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37439270

RESUMO

As part of the worldwide effort to better characterize HLA diversity in populations, we have studied the population of Québec in Canada. This province has been defined by a complex history with multiple founder effects and migration patterns. We analyzed the typing data of 3806 individuals registered in Héma-Québec's Registry, which covered most administrative regions in Québec. Typing information was resolved at the second field level of resolution by next-generation sequencing (NGS) or by Sanger sequencing. We used the HLA-net.eu GENE[RATE] tools to estimate allele and two-locus haplotype frequencies for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1, as well as Hardy-Weinberg equilibrium (HWE), selective neutrality, and linkage disequilibrium. The chord genetic distance was also calculated between administrative regions and was visualized using non-metric multidimensional scaling (NMDS) analysis. While most individual regions were in HWE, HWE was rejected for the province considered as a whole. Some regions exhibited signatures of selection, mostly toward an excess of heterozygotes. Allele and haplotype frequencies revealed outlier regions that strongly differed from the other regions. NMDS plots also showed differences between regions. The administrative regions of the province of Québec displayed heterogeneity in their HLA profiles. This heterogeneity was attributable to differing allele and haplotype specificities by region. In particular, regions 02-Saguenay-Lac-Saint-Jean and 01-Bas-St-Laurent diverged from the rest of the regions. The urban regions 06-Montréal and 13-Laval were very diversified in their HLA profiles. Together, these results will help optimize donor recruitment strategies in Québec.


Assuntos
Frequência do Gene , Humanos , Quebeque , Alelos , Haplótipos , Canadá , Sistema de Registros , Cadeias HLA-DRB1/genética
2.
HLA ; 101(1): 3-15, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36258305

RESUMO

In biomedical research, population differences are of central interest. Variations in the frequency and severity of diseases and in treatment effects among human subpopulation groups are common in many medical conditions. Unfortunately, the practices in terms of subpopulation labeling do not exhibit the level of rigor one would expect in biomedical research, especially when studying multifactorial diseases such as cancer or atherosclerosis. The reporting of population differences in clinical research is characterized by large disparities in practices, and fraught with methodological issues and inconsistencies. The actual designations such as "Black" or "Asian" refer to broad and heterogeneous groups, with a great discrepancy among countries. Moreover, the use of obsolete concepts such as "Caucasian" is unfortunate and imprecise. The use of adequate labeling to reflect the scientific hypothesis needs to be promoted. Furthermore, the use of "race/ethnicity" as a unique cause of human heterogeneity may distract from investigating other factors related to a medical condition, particularly if this label is employed as a proxy for cultural habits, diet, or environmental exposure. In addition, the wide range of opinions among researchers does not facilitate the attempts made for resolving this heterogeneity in labeling. "Race," "ethnicity," "ancestry," "geographical origin," and other similar concepts are saturated with meanings. Even if the feasibility of a global consensus on labeling seems difficult, geneticists, sociologists, anthropologists, and ethicists should help develop policies and practices for the biomedical field.


Assuntos
Pesquisa Biomédica , Grupos Populacionais , Humanos , Geografia
3.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35383854

RESUMO

In a recent article, Immel et al. (Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, et al. 2021. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol Biol Evol. 38:4059-4076) extracted DNA from 36 individuals dead from plague in Ellwangen, Southern Germany, during the 16th century. By comparing their human leukocyte antigen (HLA) genotypes with those of 50 present-day Ellwangen inhabitants, the authors reported a significant decrease of HLA-B*51:01 and HLA-C*06:02 and a significant increase of HLA-DRB1*13:01/13:02 frequencies from ancient to modern populations. After comparing these frequencies with a larger sample of 8,862 modern Germans and performing simulations of natural selection, they concluded that these changes had been driven by natural selection. In an attempt to provide more evidence on such stimulating results, we explored the HLA frequency patterns over all of Europe, we predicted binding affinities of HLA-B/C/DRB1 alleles to 106,515 Yersinia pestis-derived peptides, and we performed forward simulations of HLA genetic profiles under neutrality. Our analyses do not sustain the conclusions of HLA protection or susceptibility to plague based on ancient DNA.


Assuntos
Predisposição Genética para Doença , Antígenos HLA , Peste , DNA , DNA Antigo , Europa (Continente) , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Humanos , Peste/genética , Yersinia pestis
4.
Mol Biol Evol ; 38(4): 1580-1594, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320202

RESUMO

Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on 2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide. Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to complex and sometimes distinct environmental pressures.


Assuntos
Evolução Molecular , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Seleção Genética , Alelos , Sequência de Aminoácidos , Antígenos HLA-A/química , Antígenos HLA-B/química , Humanos
5.
BMC Evol Biol ; 20(1): 119, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933484

RESUMO

BACKGROUND: Many species are threatened with extinction as their population sizes decrease with changing environments or face novel pathogenic threats. A reduction of genetic diversity at major histocompatibility complex (MHC) genes may have dramatic effects on populations' survival, as these genes play a key role in adaptive immunity. This might be the case for chimpanzees, the MHC genes of which reveal signatures of an ancient selective sweep likely due to a viral epidemic that reduced their population size a few million years ago. To better assess how this past event affected MHC variation in chimpanzees compared to humans, we analysed several indexes of genetic diversity and linkage disequilibrium across seven MHC genes on four cohorts of chimpanzees and we compared them to those estimated at orthologous HLA genes in a large set of human populations. RESULTS: Interestingly, the analyses uncovered similar patterns of both molecular diversity and linkage disequilibrium across the seven MHC genes in chimpanzees and humans. Indeed, in both species the greatest allelic richness and heterozygosity were found at loci A, B, C and DRB1, the greatest nucleotide diversity at loci DRB1, DQA1 and DQB1, and both significant global linkage disequilibrium and the greatest proportions of haplotypes in linkage disequilibrium were observed at pairs DQA1 ~ DQB1, DQA1 ~ DRB1, DQB1 ~ DRB1 and B ~ C. Our results also showed that, despite some differences among loci, the levels of genetic diversity and linkage disequilibrium observed in contemporary chimpanzees were globally similar to those estimated in small isolated human populations, in contrast to significant differences compared to large populations. CONCLUSIONS: We conclude, first, that highly conserved mechanisms shaped the diversity of orthologous MHC genes in chimpanzees and humans. Furthermore, our findings support the hypothesis that an ancient demographic decline affecting the chimpanzee populations - like that ascribed to a viral epidemic - exerted a substantial effect on the molecular diversity of their MHC genes, albeit not more pronounced than that experienced by HLA genes in human populations that underwent rapid genetic drift during humans' peopling history. We thus propose a model where chimpanzees' MHC genes regenerated molecular variation through recombination/gene conversion and/or balancing selection after the selective sweep.


Assuntos
Evolução Molecular , Variação Genética , Antígenos HLA-D/genética , Hominidae/genética , Desequilíbrio de Ligação , Pan troglodytes , Alelos , Animais , Frequência do Gene , Genética Populacional , Haplótipos , Humanos , Pan troglodytes/genética
6.
HLA ; 96(3): 277-298, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32475052

RESUMO

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por HIV/epidemiologia , Antígenos HLA/química , Influenza Humana/epidemiologia , Pandemias , Peptídeos/química , Pneumonia Viral/epidemiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Proteínas Virais/química , África/epidemiologia , América/epidemiologia , Sequência de Aminoácidos , Ásia/epidemiologia , Austrália/epidemiologia , Betacoronavirus/genética , Betacoronavirus/imunologia , COVID-19 , Biologia Computacional , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Europa (Continente)/epidemiologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Antígenos HLA/classificação , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Peptídeos/genética , Peptídeos/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia
8.
Swiss Med Wkly ; 150: w20214, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297957

RESUMO

Human leucocyte antigen (HLA) alleles and single nucleotide polymorphisms (SNPs) lying in the HLA region are known to be associated with several infectious diseases among which acquired immunodeficiency syndrome, hepatitis B, hepatitis C, tuberculosis, leprosy and malaria are highly prevalent in many human populations worldwide. Distinct approaches such as case-control comparisons, immunogenetic analyses, bioinformatic peptide-binding predictions, ancient DNA and genome-wide association studies (GWAS) have contributed to improving this knowledge during the last decade, although many results still need stronger statistical and/or functional support. The present review updates the information regarding the main HLA allele and SNP associations observed to date for six of the most widespread and some other infectious diseases, and provides a synthetic illustration of these findings on a schematic HLA genomic map. It then discusses these results by stressing the importance of integrating information on HLA population diversity in disease-association studies.


Assuntos
Hepatite B , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética
11.
G3 (Bethesda) ; 9(7): 2199-2224, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31068377

RESUMO

Among the many genes involved in the metabolism of therapeutic drugs, human arylamine N-acetyltransferases (NATs) genes have been extensively studied, due to their medical importance both in pharmacogenetics and disease epidemiology. One member of this small gene family, NAT2, is established as the locus of the classic human acetylation polymorphism in drug metabolism. Current hypotheses hold that selective processes favoring haplotypes conferring lower NAT2 activity have been operating in modern humans' recent history as an adaptation to local chemical and dietary environments. To shed new light on such hypotheses, we investigated the genetic diversity of the three members of the NAT gene family in seven hominid species, including modern humans, Neanderthals and Denisovans. Little polymorphism sharing was found among hominids, yet all species displayed high NAT diversity, but distributed in an opposite fashion in chimpanzees and bonobos (Pan genus) compared to modern humans, with higher diversity in Pan species at NAT1 and lower at NAT2, while the reverse is observed in humans. This pattern was also reflected in the results returned by selective neutrality tests, which suggest, in agreement with the predicted functional impact of mutations detected in non-human primates, stronger directional selection, presumably purifying selection, at NAT1 in modern humans, and at NAT2 in chimpanzees. Overall, the results point to the evolution of divergent functions of these highly homologous genes in the different primate species, possibly related to their specific chemical/dietary environment (exposome) and we hypothesize that this is likely linked to the emergence of controlled fire use in the human lineage.


Assuntos
Arilamina N-Acetiltransferase/genética , Variação Genética , Pan troglodytes/genética , Alelos , Animais , Genoma , Genômica/métodos , Haplótipos , Hominidae , Humanos , Família Multigênica , Polimorfismo Genético , Especificidade da Espécie
12.
Bone Marrow Transplant ; 54(10): 1701-1709, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30953025

RESUMO

HLA matching is a critical factor for successful allogeneic hematopoietic stem cell transplantation. For unrelated donor searches, matching is usually based on high-resolution typing at five HLA loci, looking for a 10/10 match. Some studies have proposed that further matching at the haplotype level could be beneficial for clinical outcome. In this study, we determined the phased haplotypes of 291 patients using family members and segregation analysis. The sum of ranks of the haplotypes carried by patients was used as a surrogate predictor of a successful unrelated donor search. The putative impact of haplotypes was then analyzed in a cohort of 211 recipients transplanted with 10/10 matched unrelated donors. A logistic regression analysis showed a highly significant effect of the haplotypes in the outcome of a search, but we did not find any significant effect on overall survival, graft versus host disease or relapse/progression following HSCT. This study provides useful data for the optimization of unrelated bone marrow donor searches, but does not confirm previous reports that matching at the haplotype level has a clinical impact following HSCT. Due to the extreme polymorphism of HLA genes, further studies are warranted to better understand the many factors at play.

13.
Hum Immunol ; 80(1): 62-66, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30395911

RESUMO

This paper discusses the advantages provided by next generation sequencing (NGS) compared to traditional typings or limited sequencing strategies for the characterization of HLA population diversity based on four documented examples. We also comment the limitations of this approach by highlighting pitfalls in interpreting NGS data.


Assuntos
Variação Genética , Genética Populacional , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Interpretação Estatística de Dados , Evolução Molecular , Teste de Histocompatibilidade , Humanos , Análise de Sequência de DNA
14.
Immunogenetics ; 70(2): 141, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143073

RESUMO

The above article originally published with an incomplete bibliographic information for Bitarello et al. (2016) and presented correctly in this article.

15.
Mol Ecol ; 26(22): 6238-6252, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28950417

RESUMO

Human leukocyte antigen (HLA) genes play a key role in the immune response to infectious diseases, some of which are highly prevalent in specific environments, like malaria in sub-Saharan Africa. Former case-control studies showed that one particular HLA-B allele, B*53, was associated with malaria protection in Gambia, but this hypothesis was not tested so far within a population genetics framework. In this study, our objective was to assess whether pathogen-driven selection associated with malaria contributed to shape the HLA-B genetic landscape of Africa. To that aim, we first typed the HLA-A and -B loci in 484 individuals from 11 populations living in different environments across the Sahel, and we analysed these data together with those available for 29 other populations using several approaches including linear modelling on various genetic, geographic and environmental parameters. In addition to relevant signatures of populations' demography and migrations history in the genetic differentiation patterns of both HLA-A and -B loci, we found that the frequencies of three HLA alleles, B*53, B*78 and A*74, were significantly associated with Plasmodium falciparum malaria prevalence, suggesting their increase through pathogen-driven selection in malaria-endemic environments. The two HLA-B alleles were further identified, by high-throughput sequencing, as B*53:01:01 (in putative linkage disequilibrium with one HLA-C allele, C*04:01:01:01) and B*78:01 in all but one individuals tested, making them appropriate candidates to malaria protection. These results highlight the role of environmental factors in the evolution of the HLA polymorphism and open key perspectives for functional studies focusing on HLA peptide-binding properties.


Assuntos
Resistência à Doença/genética , Genética Populacional , Antígenos HLA-B/genética , Malária Falciparum/genética , África Subsaariana , Alelos , Humanos , Desequilíbrio de Ligação
16.
Hum Immunol ; 77(10): 832-840, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27377016

RESUMO

The polymorphism of HLA genes can be used to reconstruct human peopling history. However, this huge diversity impairs successful matching in stem cell transplantation, a situation which has led to the recruitment of millions of donors worldwide. In parallel to the increase of recruitment, registries are progressively relying on information from population genetics to optimize their donor pools in terms of HLA variability. In this study, the HLA data of 65,000 Spanish bone marrow donors were analyzed together with 60,000 Portuguese individuals to provide a comprehensive HLA genetic map of the Iberian Peninsula. The frequencies of many alleles were shown to vary continuously across the Peninsula, either increasing or decreasing from the Mediterranean coast to the Atlantic domain or from the Strait of Gibraltar to the Pyrenees and Bay of Biscay. Similar patterns were observed for several haplotypes. In addition, within some regions neighboring provinces share a close genetic similarity. These results outline the genetic landscape of the Iberian Peninsula, and confirm that the analysis of the HLA polymorphism may reveal relevant signatures of past demographic events even when data from donor registries are used. This conclusion stimulates future developments of the Spanish registry, presented here for the first time.


Assuntos
Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Polimorfismo Genético , Sistema de Registros , Doadores de Tecidos , Frequência do Gene , Genótipo , Teste de Histocompatibilidade , Humanos , Espanha
17.
Immunogenetics ; 68(6-7): 401-416, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27233953

RESUMO

The main function of HLA class I molecules is to present pathogen-derived peptides to cytotoxic T lymphocytes. This function is assumed to drive the maintenance of an extraordinary amount of polymorphism at each HLA locus, providing an immune advantage to heterozygote individuals capable to present larger repertories of peptides than homozygotes. This seems contradictory, however, with a reduced diversity at individual HLA loci exhibited by some isolated populations. This study shows that the level of functional diversity predicted for the two HLA-A and HLA-B genes considered simultaneously is similar (almost invariant) between 46 human populations, even when a reduced diversity exists at each locus. We thus propose that HLA-A and HLA-B evolved through a model of joint divergent asymmetric selection conferring all populations an equivalent immune potential. The distinct pattern observed for HLA-C is explained by its functional evolution towards killer cell immunoglobulin-like receptor (KIR) activity regulation rather than peptide presentation.


Assuntos
Genes MHC Classe I/genética , Variação Genética/genética , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores KIR/metabolismo , Seleção Genética/genética , Evolução Molecular , Genética Populacional , Haplótipos , Humanos , Fragmentos de Peptídeos/genética , Locos de Características Quantitativas , Receptores KIR/genética
18.
BMC Evol Biol ; 15: 263, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620671

RESUMO

BACKGROUND: Dietary changes associated to shifts in subsistence strategies during human evolution may have induced new selective pressures on phenotypes, as currently held for lactase persistence. Similar hypotheses exist for arylamine N-acetyltransferase 2 (NAT2) mediated acetylation capacity, a well-known pharmacogenetic trait with wide inter-individual variation explained by polymorphisms in the NAT2 gene. The environmental causative factor (if any) driving its evolution is as yet unknown, but significant differences in prevalence of acetylation phenotypes are found between hunter-gatherer and food-producing populations, both in sub-Saharan Africa and worldwide, and between agriculturalists and pastoralists in Central Asia. These two subsistence strategies also prevail among sympatric populations of the African Sahel, but knowledge on NAT2 variation among African pastoral nomads was up to now very scarce. Here we addressed the hypothesis of different selective pressures associated to the agriculturalist or pastoralist lifestyles having acted on the evolution of NAT2 by sequencing the gene in 287 individuals from five pastoralist and one agriculturalist Sahelian populations. RESULTS: We show that the significant NAT2 genetic structure of African populations is mainly due to frequency differences of three major haplotypes, two of which are categorized as decreased function alleles (NAT2*5B and NAT2*6A), particularly common in populations living in arid environments, and one fast allele (NAT2*12A), more frequently detected in populations living in tropical humid environments. This genetic structure does associate more strongly with a classification of populations according to ecoregions than to subsistence strategies, mainly because most Sahelian and East African populations display little to no genetic differentiation between them, although both regions hold nomadic or semi-nomadic pastoralist and sedentary agriculturalist communities. Furthermore, we found significantly higher predicted proportions of slow acetylators in pastoralists than in agriculturalists, but also among food-producing populations living in the Sahelian and dry savanna zones than in those living in humid environments, irrespective of their mode of subsistence. CONCLUSION: Our results suggest a possible independent influence of both the dietary habits associated with subsistence modes and the chemical environment associated with climatic zones and biomes on the evolution of NAT2 diversity in sub-Saharan African populations.


Assuntos
Arilamina N-Acetiltransferase/genética , Genética Populacional , Biologia Molecular , Acetilação , África Subsaariana , População Negra , Alimentos , Genética Médica , Haplótipos , Humanos , Polimorfismo Genético
19.
BMC Evol Biol ; 15: 240, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530905

RESUMO

BACKGROUND: Recent genetic studies have suggested that the colonization of East Asia by modern humans was more complex than a single origin from the South, and that a genetic contribution via a Northern route was probably quite substantial. RESULTS: Here we use a spatially-explicit computer simulation approach to investigate the human migration hypotheses of this region based on one-route or two-route models. We test the likelihood of each scenario by using Human Leukocyte Antigen (HLA) - A, -B, and - DRB1 genetic data of East Asian populations, with both selective and demographic parameters considered. The posterior distribution of each parameter is estimated by an Approximate Bayesian Computation (ABC) approach. CONCLUSIONS: Our results strongly support a model with two main routes of colonization of East Asia on both sides of the Himalayas, with distinct demographic histories in Northern and Southern populations, characterized by more isolation in the South. In East Asia, gene flow between populations originating from the two routes probably existed until a remote prehistoric period, explaining the continuous pattern of genetic variation currently observed along the latitude. A significant although dissimilar level of balancing selection acting on the three HLA loci is detected, but its effect on the local genetic patterns appears to be minor compared to those of past demographic events.


Assuntos
Simulação por Computador , Antígenos HLA/genética , Migração Humana , Povo Asiático/genética , Teorema de Bayes , Ásia Oriental , Fluxo Gênico , Variação Genética , Humanos
20.
Immunogenetics ; 67(11-12): 651-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26459025

RESUMO

Supertypes are groups of human leukocyte antigen (HLA) alleles which bind overlapping sets of peptides due to sharing specific residues at the anchor positions-the B and F pockets-of the peptide-binding region (PBR). HLA alleles within the same supertype are expected to be functionally similar, while those from different supertypes are expected to be functionally distinct, presenting different sets of peptides. In this study, we applied the supertype classification to the HLA-A and HLA-B data of 55 worldwide populations in order to investigate the effect of natural selection on supertype rather than allelic variation at these loci. We compared the nucleotide diversity of the B and F pockets with that of the other PBR regions through a resampling procedure and compared the patterns of within-population heterozygosity (He) and between-population differentiation (G ST) observed when using the supertype definition to those estimated when using randomized groups of alleles. At HLA-A, low levels of variation are observed at B and F pockets and randomized He and G ST do not differ from the observed data. By contrast, HLA-B concentrates most of the differences between supertypes, the B pocket showing a particularly high level of variation. Moreover, at HLA-B, the reassignment of alleles into random groups does not reproduce the patterns of population differentiation observed with supertypes. We thus conclude that differently from HLA-A, for which supertype and allelic variation show similar patterns of nucleotide diversity within and between populations, HLA-B has likely evolved through specific adaptations of its B pocket to local pathogens.


Assuntos
Evolução Biológica , Genética Populacional , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Polimorfismo Genético/genética , Seleção Genética/genética , Simulação por Computador , Bases de Dados Factuais , Antígenos HLA-A/classificação , Antígenos HLA-A/imunologia , Antígenos HLA-B/classificação , Antígenos HLA-B/imunologia , Teste de Histocompatibilidade , Humanos , Epitopos Imunodominantes , Agências Internacionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...