Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194620

RESUMO

fMRI studies that investigate somatotopic tactile representations in the human cortex typically use either block or phase-encoded stimulation designs. Event-related (ER) designs allow for more flexible and unpredictable stimulation sequences than the other methods, but they are less efficient. Here, we compared an efficiency-optimized fast ER design (2.8-s average intertrial interval; ITI) to a conventional slow ER design (8-s average ITI) for mapping voxelwise fingertip tactile tuning properties in the sensorimotor cortex of six participants at 7 Tesla. The fast ER design yielded more reliable responses compared with the slow ER design, but with otherwise similar tuning properties. Concatenating the fast and slow ER data, we demonstrate in each individual brain the existence of two separate somatotopically-organized tactile representations of the fingertips, one in the primary somatosensory cortex (S1) on the postcentral gyrus, and the other shared across the motor and premotor cortices on the precentral gyrus. In both S1 and motor representations, fingertip selectivity decreased progressively, from narrowly-tuned Brodmann area (BA) 3b and BA4a, respectively, toward associative parietal and frontal regions that responded equally to all fingertips, suggesting increasing information integration along these two pathways. In addition, fingertip selectivity in S1 decreased from the cortical representation of the thumb to that of the pinky.


Assuntos
Mapeamento Encefálico , Percepção do Tato , Mapeamento Encefálico/métodos , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia
2.
Brain Topogr ; 33(1): 22-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522362

RESUMO

A previously introduced Bayesian non-parametric multi-scale technique, called iterated Multigrid Priors (iMGP) method, is used to map the topographic organization of human primary somatosensory cortex (S1). We analyze high spatial resolution fMRI data acquired at ultra-high field (UHF, 7T) in individual subjects during vibrotactile stimulation applied to each distal phalange of the left hand digits using both a travelling-wave (TW) and event-related (ER) paradigm design. We compare the somatotopic digit representations generated in S1 using the iMGP method with those obtained using established fMRI paradigms and analysis techniques: Fourier-based analysis of travelling-wave data and General Linear Model (GLM) analysis of event-related data. Maps derived with the iMGP method are similar to those derived with the standard analysis, but in contrast to the Fourier-based analysis, the iMGP method reveals overlap of activity from adjacent digit representations in S1. These findings validate the use of the iMGP method as an alternative to study digit representations in S1, particularly with the TW design as an attractive means to study cortical reorganization in patient populations such dystonia and carpal tunnel syndrome, where the degree of spatial overlap of cortical finger representations is of interest.


Assuntos
Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/fisiologia , Adulto , Teorema de Bayes , Mapeamento Encefálico/métodos , Feminino , Dedos/fisiologia , Análise de Fourier , Humanos , Modelos Lineares , Masculino
3.
Neuroimage ; 189: 329-340, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639839

RESUMO

The sensation of touch in the glabrous skin of the human hand is conveyed by thousands of fast-conducting mechanoreceptive afferents, which can be categorised into four distinct types. The spiking properties of these afferents in the periphery in response to varied tactile stimuli are well-characterised, but relatively little is known about the spatiotemporal properties of the neural representations of these different receptor types in the human cortex. Here, we use the novel methodological combination of single-unit intraneural microstimulation (INMS) with magnetoencephalography (MEG) to localise cortical representations of individual touch afferents in humans, by measuring the extracranial magnetic fields from neural currents. We found that by assessing the modulation of the beta (13-30 Hz) rhythm during single-unit INMS, significant changes in oscillatory amplitude occur in the contralateral primary somatosensory cortex within and across a group of fast adapting type I mechanoreceptive afferents, which corresponded well to the induced response from matched vibrotactile stimulation. Combining the spatiotemporal specificity of MEG with the selective single-unit stimulation of INMS enables the interrogation of the central representations of different aspects of tactile afferent signalling within the human cortices. The fundamental finding that single-unit INMS ERD responses are robust and consistent with natural somatosensory stimuli will permit us to more dynamically probe the central nervous system responses in humans, to address questions about the processing of touch from the different classes of mechanoreceptive afferents and the effects of varying the stimulus frequency and patterning.


Assuntos
Vias Aferentes/fisiologia , Ritmo beta/fisiologia , Magnetoencefalografia/métodos , Mecanorreceptores/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Idoso , Estimulação Elétrica , Feminino , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Vibração , Adulto Jovem
4.
Cereb Cortex ; 29(1): 410-428, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30357410

RESUMO

It is commonly assumed that the human auditory cortex is organized similarly to that of macaque monkeys, where the primary region, or "core," is elongated parallel to the tonotopic axis (main direction of tonotopic gradients), and subdivided across this axis into up to 3 distinct areas (A1, R, and RT), with separate, mirror-symmetric tonotopic gradients. This assumption, however, has not been tested until now. Here, we used high-resolution ultra-high-field (7 T) magnetic resonance imaging (MRI) to delineate the human core and map tonotopy in 24 individual hemispheres. In each hemisphere, we assessed tonotopic gradients using principled, quantitative analysis methods, and delineated the core using 2 independent (functional and structural) MRI criteria. Our results indicate that, contrary to macaques, the human core is elongated perpendicular rather than parallel to the main tonotopic axis, and that this axis contains no more than 2 mirror-reversed gradients within the core region. Previously suggested homologies between these gradients and areas A1 and R in macaques were not supported. Our findings suggest fundamental differences in auditory cortex organization between humans and macaques.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Animais , Feminino , Haplorrinos , Humanos , Macaca , Masculino , Especificidade da Espécie
5.
Hum Brain Mapp ; 40(4): 1298-1316, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430706

RESUMO

Functional MRI at ultra-high field (UHF, ≥7 T) provides significant increases in BOLD contrast-to-noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for reduced field-of-view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher-order cognitive tasks leads to a number of challenges, in particular how to perform robust group-level statistical analyses. This study addresses these challenges using an inter-sensory cognitive task which modulates top-down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalisation and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal-lateral-prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second-level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multivariate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Adulto Jovem
6.
Neuroimage ; 164: 10-17, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161312

RESUMO

In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos
7.
Elife ; 52016 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-27154626

RESUMO

Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit's receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex. Additional brain regions in bilateral secondary somatosensory cortex, premotor cortex, primary motor cortex, insula and posterior parietal cortex, as well as in contralateral prefrontal cortex are also shown to be activated in response to INMS. The combination of INMS and 7T fMRI opens up an unprecedented opportunity to bridge the gap between first-order mechanoreceptive afferent input codes and their spatial, dynamic and perceptual representations in human cortex.


Assuntos
Córtex Cerebral/fisiologia , Nervo Mediano/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/ultraestrutura , Feminino , Dedos/inervação , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Nervo Mediano/diagnóstico por imagem , Pessoa de Meia-Idade , Estimulação Física , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/ultraestrutura , Córtex Somatossensorial/diagnóstico por imagem , Vibração
8.
Neuroimage ; 93 Pt 2: 221-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23558101

RESUMO

Ultra-high-field (UHF) MRI is ideally suited for structural and functional imaging of the brain. High-resolution structural MRI can be used to map the anatomical boundaries between functional domains of the brain by identifying changes related to the pattern of myelination within cortical gray matter, opening up the possibility to study the relationship between functional domains and underlying structure in vivo. In a recent study, we demonstrated the correspondence between functional (based on retinotopic mapping) and structural (based on changes in T2(⁎)-weighted images linked to myelination) parcellations of the primary visual cortex (V1) in vivo at 7T (Sanchez-Panchuelo et al., 2012b). Here, we take advantage of the improved BOLD CNR and high spatial resolution achievable at 7T to study regional structural variations across the functionally defined areas within the primary somatosensory cortex (S1) in individual subjects. Using a traveling wave fMRI paradigm to map the internal somatotopic representation of the index, middle, and ring fingers in S1, we were able to identify multiple map reversals at the tip and base, corresponding to the boundaries between Brodmann areas 3a, 3b, 1 and 2. Based on high resolution structural MRI data acquired in the same subjects, we inspected these functionally-parcellated Brodmann areas for differences in cortical thickness and MR contrast measures (magnetization transfer ratio (MTR) and signal intensity in phase sensitive inversion recovery (PSIR) images) that are sensitive to myelination. Consistent area-related differences in cortical thickness and MTR/PSIR measurements were found across subjects. However these measures did not have sufficient sensitivity to allow definition of areal boundaries.


Assuntos
Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Física
9.
Hum Brain Mapp ; 35(5): 2027-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24014446

RESUMO

Recent fMRI studies of the human primary somatosensory cortex have been able to differentiate the cortical representations of different fingertips at a single-subject level. These studies did not, however, investigate the expected overlap in cortical activation due to the stimulation of different fingers. Here, we used an event-related design in six subjects at 7 Tesla to explore the overlap in cortical responses elicited in S1 by vibrotactile stimulation of the five fingertips. We found that all parts of S1 show some degree of spatial overlap between the cortical representations of adjacent or even nonadjacent fingertips. In S1, the posterior bank of the central sulcus showed less overlap than regions in the post-central gyrus, which responded to up to five fingertips. The functional properties of these two areas are consistent with the known layout of cytoarchitectonically defined subareas, and we speculate that they correspond to subarea 3b (S1 proper) and subarea 1, respectively. In contrast with previous fMRI studies, however, we did not observe discrete activation clusters that could unequivocally be attributed to different subareas of S1. Venous maps based on T2*-weighted structural images suggest that the observed overlap is not driven by extra-vascular contributions from large veins.


Assuntos
Vias Aferentes/irrigação sanguínea , Dedos/inervação , Individualidade , Córtex Somatossensorial/irrigação sanguínea , Adulto , Vias Aferentes/fisiologia , Análise de Variância , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Física
10.
J Neurophysiol ; 109(9): 2293-305, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427300

RESUMO

A desirable goal of functional MRI (fMRI), both clinically and for basic research, is to produce detailed maps of cortical function in individual subjects. Single-subject mapping of the somatotopic hand representation in the human primary somatosensory cortex (S1) has been performed using both phase-encoding and block/event-related designs. Here, we review the theoretical strengths and limits of each method and empirically compare high-resolution (1.5 mm isotropic) somatotopic maps obtained using fMRI at ultrahigh magnetic field (7 T) with phase-encoding and event-related designs in six subjects in response to vibrotactile stimulation of the five fingertips. Results show that the phase-encoding design is more efficient than the event-related design for mapping fingertip-specific responses and in particular allows us to describe a new additional somatotopic representation of fingertips on the precentral gyrus. However, with sufficient data, both designs yield very similar fingertip-specific maps in S1, which confirms that the assumption of local representational continuity underlying phase-encoding designs is largely valid at the level of the fingertips in S1. In addition, it is shown that the event-related design allows the mapping of overlapping cortical representations that are difficult to estimate using the phase-encoding design. The event-related data show a complex pattern of overlapping cortical representations for different fingertips within S1 and demonstrate that regions of S1 responding to several adjacent fingertips can incorrectly be identified as responding preferentially to one fingertip in the phase-encoding data.


Assuntos
Potenciais Somatossensoriais Evocados , Dedos/inervação , Córtex Somatossensorial/fisiologia , Percepção do Tato , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tato , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...