Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(26): 15799-15804, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32656399

RESUMO

Transition metal chalcogenide thin films of the type Fe x ZrSe2 have applications in electronic devices, but their use is limited by current synthetic techniques. Here, we demonstrate the synthesis and characterization of Fe-intercalated ZrSe2 thin films on quartz substrates using the low-pressure chemical vapor deposition of the single-source precursor [Fe(η5-C5H4Se)2Zr(η5-C5H5)2]2. Powder X-ray diffraction of the film scraping and subsequent Rietveld refinement of the data showed the successful synthesis of the Fe0.14ZrSe2 phase, along with secondary phases of FeSe and ZrO2. Upon intercalation, a small optical band gap enhancement (E g(direct) opt = 1.72 eV) is detected in comparison with that of the host material.

2.
Chem Sci ; 11(19): 4980-4990, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34122954

RESUMO

Thermal control in low-emission windows is achieved by the application of glazings, which are simultaneously optically transparent in the visible and reflective in the near-infrared (IR). This phenomenon is characteristic of coatings with wide optical band gaps that have high enough charge carrier concentrations for the material to interact with electromagnetic radiation in the IR region. While conventional low-E coatings are composed of sandwiched structures of oxides and thin Ag films or of fluorinated SnO2 coatings, ZnO-based glazing offers an environmentally stable and economical alternative with competitive optoelectronic properties. In this work, gallium-doped zinc oxide (GZO) coatings with properties for low-E coatings that exceed industrial standards (T visible > 82%; R 2500 nm > 90%; λ (plasma) = 1290 nm; ρ = 4.7 × 10-4 Ω cm; R sh = 9.4 Ω·â–¡-1) are deposited through a sustainable and environmentally friendly halogen-free deposition route from [Ga(acac)3] and a pre-organized zinc oxide precursor [EtZnOiPr]4 (1) via single-pot aerosol-assisted chemical vapor deposition. GZO films are highly (002)-textured, smooth and compact without need of epitaxial growth. The method herein describes the synthesis of coatings with opto-electronic properties commonly achievable only through high-vacuum methods, and provides an alternative to the use of pyrophoric ZnEt2 and halogenated SnO2 coatings currently used in low-emission glazing and photovoltaic technology.

3.
J Magn Reson ; 300: 8-17, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30684826

RESUMO

Signal Amplification By Reversible Exchange (SABRE) is a versatile method for hyperpolarizing small organic molecules that helps to overcome the inherent low signal-to-noise ratio of nuclear magnetic resonance (NMR) measurements. It offers orders of magnitude enhanced signal strength, but the obtained nuclear polarization usually rapidly relaxes, requiring a quick transport of the sample to the spectrometer. Here we report a new design of a polarizing system, which can be used to prepare a continuous flow of SABRE-hyperpolarized sample with a considerable throughput of several millilitres per second and a rapid delivery into an NMR instrument. The polarizer performance under different conditions such as flow rate of the hydrogen or liquid sample is tested by measuring a series of NMR spectra and magnetic resonance images (MRI) of hyperpolarized pyridine in methanol. Results show a capability to continuously produce sample with dramatically enhanced signal over two orders of magnitude. The constant supply of hyperpolarized sample can be exploited, e.g., in experiments requiring multiple repetitions, such as 2D- and 3D-NMR or MRI measurements, and also naturally allows measurements of flow maps, including systems with high flow rates, for which the level of achievable thermal polarization might not be usable any more. In addition, the experiments can be viably carried out in a non-deuterated solvent, due to the effective suppression of the thermal polarization by the fast sample flow. The presented system opens the possibilities for SABRE experiments requiring a long-term, stable and high level of nuclear polarization.

4.
ChemistryOpen ; 7(11): 850-857, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30402374

RESUMO

Bidentate diamine and amino-alcohol ligands have been used to form solid, water-soluble, and air-stable monomeric copper complexes of the type [Cu(NH2CH2CH(R)Y)2(NO3)2] (1, R=H, Y=NH2; 2, R=H, Y=OH; 3, R=Me, Y=OH). The complexes were characterized by elemental analysis, mass spectrometry, infrared spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. Irrespective of their decomposition temperature, precursors 1-3 yield highly conductive copper features [1.5×10-6â€…Ω m (±5×10-7â€…Ω m)] upon atmospheric-pressure plasma-enhanced sintering.

5.
Dalton Trans ; 47(15): 5415-5421, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29589863

RESUMO

Macrocyclic [Fe(η5-C5H4Se)2M(η5-C5H4R)2]2 [M = Ti (1), Zr (2), Hf (3), R = H; and M = Zr (4), Hf (5), R = tBu] were prepared and characterized by 77Se NMR spectroscopy and the crystal structures of 1-3 and 5 were determined by single-crystal X-ray diffraction. The crystal structure of 4 is known and the complex is isomorphous with 5. 1-5 form mutually similar macrocyclic tetranuclear complexes in which the alternating Fe(C5H4Se)2 and M(C5H4R)2 centers are linked by selenium bridges. The thermogravimetric analysis (TGA) of 1-3 under a helium atmosphere indicated that the complexes undergo a two-step decomposition upon heating. The final products were identified using powder X-ray diffraction as FexMSe2, indicating their potential as single-source precursors for functional materials.

6.
RSC Adv ; 8(40): 22552-22558, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35539712

RESUMO

Fe-doped TiSe2 thin-films were synthesized via low pressure chemical vapor deposition (LPCVD) of a single source precursor: [Fe(η5-C5H4Se)2Ti(η5-C5H5)2]2 (1). Samples were heated at 1000 °C for 1-18 h and cooled to room temperature following two different protocols, which promoted the formation of different phases. The resulting films were analyzed by grazing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and UV/vis spectroscopy. An investigation of the Fe doping limit from a parallel pyrolysis study of Fe x TiSe2 powders produced in situ during LPCVD depositions has shown an increase in the Fe-TiSe2-Fe layer width with Fe at% increase. Powders were analyzed using powder X-ray diffraction (PXRD) involving Rietveld refinement and XPS. UV/vis measurements of the semiconducting thin films show a shift in band gap with iron doping from 0.1 eV (TiSe2) to 1.46 eV (Fe0.46TiSe2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...