Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Obesity (Silver Spring) ; 32(7): 1329-1338, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764181

RESUMO

OBJECTIVE: Obesity is associated with alterations in eating behavior and neurocognitive function. In this study, we investigate the effect of obesity on brain energy utilization, including brain glucose transport and metabolism. METHODS: A total of 11 lean participants and 7 young healthy participants with obesity (mean age, 27 years) underwent magnetic resonance spectroscopy scanning coupled with a hyperglycemic clamp (target, ~180 mg/dL) using [1-13C] glucose to measure brain glucose uptake and metabolism, as well as peripheral markers of insulin resistance. RESULTS: Individuals with obesity demonstrated an ~20% lower ratio of brain glucose uptake to cerebral glucose metabolic rate (Tmax/CMRglucose) than lean participants (2.12 ± 0.51 vs. 2.67 ± 0.51; p = 0.04). The cerebral tricarboxylic acid cycle flux (VTCA) was similar between the two groups (p = 0.64). There was a negative correlation between total nonesterified fatty acids and Tmax/CMRglucose (r = -0.477; p = 0.045). CONCLUSIONS: We conclude that CMRglucose is unlikely to differ between groups due to similar VTCA, and, therefore, the glucose transport Tmax is lower in individuals with obesity. These human findings suggest that obesity is associated with reduced cerebral glucose transport capacity even at a young age and in the absence of other cardiometabolic comorbidities, which may have implications for long-term brain function and health.


Assuntos
Encéfalo , Glucose , Resistência à Insulina , Obesidade , Humanos , Adulto , Obesidade/metabolismo , Masculino , Feminino , Glucose/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Adulto Jovem , Glicemia/metabolismo , Espectroscopia de Ressonância Magnética , Ciclo do Ácido Cítrico , Transporte Biológico , Técnica Clamp de Glucose , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Imageamento por Ressonância Magnética
2.
Ann N Y Acad Sci ; 1518(1): 25-46, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202764

RESUMO

In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Humanos , Hipoglicemia/etiologia , Hipoglicemia/terapia , Diabetes Mellitus Tipo 1/terapia , Insulina/uso terapêutico , Glucose , Glicemia , Hipoglicemiantes/uso terapêutico
3.
Diabetologia ; 65(5): 895-905, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247067

RESUMO

AIMS/HYPOTHESIS: We have previously shown that individuals with uncontrolled type 2 diabetes have a blunted rise in brain glucose levels measured by 1H magnetic resonance spectroscopy. Here, we investigate whether reductions in HbA1c normalise intracerebral glucose levels. METHODS: Eight individuals (two men, six women) with poorly controlled type 2 diabetes and mean ± SD age 44.8 ± 8.3 years, BMI 31.4 ± 6.1 kg/m2 and HbA1c 84.1 ± 16.2 mmol/mol (9.8 ± 1.4%) underwent 1H MRS scanning at 4 Tesla during a hyperglycaemic clamp (~12.21 mmol/l) to measure changes in cerebral glucose at baseline and after a 12 week intervention that improved glycaemic control through the use of continuous glucose monitoring, diabetes regimen intensification and frequent visits to an endocrinologist and nutritionist. RESULTS: Following the intervention, mean ± SD HbA1c decreased by 24.3 ± 15.3 mmol/mol (2.1 ± 1.5%) (p=0.006), with minimal weight changes (p=0.242). Using a linear mixed-effects regression model to compare glucose time courses during the clamp pre and post intervention, the pre-intervention brain glucose level during the hyperglycaemic clamp was significantly lower than the post-intervention brain glucose (p<0.001) despite plasma glucose levels during the hyperglycaemic clamp being similar (p=0.266). Furthermore, the increases in brain glucose were correlated with the magnitude of improvement in HbA1c (r = 0.71, p=0.048). CONCLUSION/INTERPRETATION: These findings highlight the potential reversibility of cerebral glucose transport capacity and metabolism that can occur in individuals with type 2 diabetes following improvement of glycaemic control. Trial registration ClinicalTrials.gov NCT03469492.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Adulto , Glicemia/metabolismo , Automonitorização da Glicemia , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Cinética , Masculino , Pessoa de Meia-Idade
4.
Nutrients ; 12(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371247

RESUMO

Glucose is the primary energy source for the brain, and exposure to both high and low levels of glucose has been associated with numerous adverse central nervous system (CNS) outcomes. While a large body of work has highlighted the impact of hyperglycemia on peripheral and central measures of oxidative stress, cognitive deficits, and vascular complications in Type 1 and Type 2 diabetes, there is growing evidence that glycemic variability significantly drives increased oxidative stress, leading to neuroinflammation and cognitive dysfunction. In this review, the latest data on the impact of glycemic variability on brain function and neuroinflammation will be presented. Because high levels of oxidative stress have been linked to dysfunction of the blood-brain barrier (BBB), special emphasis will be placed on studies investigating the impact of glycemic variability on endothelial and vascular inflammation. The latest clinical and preclinical/in vitro data will be reviewed, and clinical/therapeutic implications will be discussed.


Assuntos
Glicemia/metabolismo , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Nervoso Central/fisiopatologia , Hiperglicemia/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Encéfalo/metabolismo , Controle Glicêmico , Humanos , Inflamação
5.
Int J Obes (Lond) ; 44(4): 964-967, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31636373

RESUMO

The energy-dissipating properties of brown adipose tissue (BAT) have been proposed as therapeutic targets for obesity and diabetes. Little is known about basal BAT activity. Capitalizing on the dense sympathetic innervation of BAT, we have previously shown that BAT can be detected in humans under resting room temperature (RT) conditions by using (S,S)-11C-O-methylreboxetine (MRB), a selective ligand for the norepinephrine transporter (NET). In this study, we determine whether MRB labeling of human BAT is altered by obesity. Fifteen healthy, nondiabetic Caucasian women (nine lean, age 25.6 ± 1.7, BMI 21.8 ± 1.3 kg/m2; six obese age 30.8 ± 8.8 BMI 37.9 ± 6.6 kg/m2) underwent PET-CT imaging of the neck/supraclavicular region using 11C-MRB under RT conditions. The distribution volume ratio (DVR) for 11C-MRB was estimated via multilinear reference tissue model 2 (MRTM2) referenced to the occipital cortex. Two women (one lean and one with obesity) had no detectable BAT. Of the women with detectable BAT, women with obesity had lower 11C-MRB DVR (0.80 ± 0.12 BAT DVR) compared to lean (1.15 ± 0.19 BAT DVR) (p = 0.004). Our findings are consistent with reports that NET is decreased in obesity and suggest that the sympathetic innervation of BAT is altered in obesity.


Assuntos
Tecido Adiposo Marrom , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Obesidade , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Adulto , Radioisótopos de Carbono/farmacocinética , Feminino , Humanos , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Reboxetina/farmacocinética , Adulto Jovem
6.
J Nucl Med ; 61(4): 570-576, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31601695

RESUMO

Type 1 diabetes mellitus (T1DM) has traditionally been characterized by a complete destruction of ß-cell mass (BCM); however, there is growing evidence of possible residual BCM present in T1DM. Given the absence of in vivo tools to measure BCM, routine clinical measures of ß-cell function (e.g., C-peptide release) may not reflect BCM. We previously demonstrated the potential utility of PET imaging with the dopamine D2 and D3 receptor agonist 3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol (11C-(+)-PHNO) to differentiate between healthy control (HC) and T1DM individuals. Methods: Sixteen individuals participated (10 men, 6 women; 9 HCs, 7 T1DMs). The average duration of diabetes was 18 ± 6 y (range, 14-30 y). Individuals underwent PET/CT scanning with a 120-min dynamic PET scan centered on the pancreas. One- and 2-tissue-compartment models were used to estimate pancreas and spleen distribution volume. Reference region approaches (spleen as reference) were also investigated. Quantitative PET measures were correlated with clinical outcome measures. Immunohistochemistry was performed to examine colocalization of dopamine receptors with endocrine hormones in HC and T1DM pancreatic tissue. Results: C-peptide release was not detectable in any T1DM individuals, whereas proinsulin was detectable in 3 of 5 T1DM individuals. Pancreas SUV ratio minus 1 (SUVR-1) (20-30 min; spleen as reference region) demonstrated a statistically significant reduction (-36.2%) in radioligand binding (HCs, 5.6; T1DMs, 3.6; P = 0.03). Age at diagnosis correlated significantly with pancreas SUVR-1 (20-30 min) (R2 = 0.67, P = 0.025). Duration of diabetes did not significantly correlate with pancreas SUVR-1 (20-30 min) (R2 = 0.36, P = 0.16). Mean acute C-peptide response to arginine at maximal glycemic potentiation did not significantly correlate with SUVR-1 (20-30 min) (R2 = 0.57, P = 0.05), nor did mean baseline proinsulin (R2 = 0.45, P = 0.10). Immunohistochemistry demonstrated colocalization of dopamine D3 receptor and dopamine D2 receptor in HCs. No colocalization of the dopamine D3 receptor or dopamine D2 receptor was seen with somatostatin, glucagon, or polypeptide Y. In a separate T1DM individual, no immunostaining was seen with dopamine D3 receptor, dopamine D2 receptor, or insulin antibodies, suggesting that loss of endocrine dopamine D3 receptor and dopamine D2 receptor expression accompanies loss of ß-cell functional insulin secretory capacity. Conclusion: Thirty-minute scan durations and SUVR-1 provide quantitative outcome measures for 11C-(+)-PHNO, a dopamine D3 receptor-preferring agonist PET radioligand, to differentiate BCM in T1DM and HCs.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Oxazinas , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Adulto , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Clin Endocrinol Metab ; 104(9): 3911-3919, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087061

RESUMO

PURPOSE: Changes in blood glucose levels have been shown to influence eating in healthy individuals; however, less is known about effects of glucose on food intake in individuals who are obese (OB). The goal of this study was to determine the predictive effect of circulating glucose levels on eating in free-living OB and normal weight (NW) individuals. METHODS: Interstitial glucose levels, measured with a continuous glucose monitor (CGM) system, were obtained from 15 OB and 16 NW volunteers (age: 40 ± 14 and 37 ± 12 years; weight: 91 ± 13 and 68 ± 12 kg; hemoglobin A1c: 5.1% ± 0.7% and 5.2% ± 0.4%, respectively). While wearing the CGM, participants filled out a food log (mealtime, hunger rating, and amount of food). Glucose profiles were measured in relation to their meals [macro program (CGM peak and nadir analysis) using Microsoft® Excel]. RESULTS: OB and NW individuals showed comparable CGM glucose levels: mean [OB = 100 ± 8 mg/dL; NW = 99 ± 13 mg/dL; P = nonsignificant (NS)] and SD (OB = 18 ± 5 mg/dL, NW = 18 ± 4 mg/dL; P = NS). Obesity was associated with slower postprandial rate of changing glucose levels (P = 0.04). Preprandial nadir glucose levels predicted hunger and food intake in both groups (P < 0.0001), although hunger was associated with greater food intake in OB individuals than in NW individuals (P = 0.008 for group interaction). CONCLUSIONS: Premeal glucose nadir predicted hunger and food intake in a group of free-living, healthy, nondiabetic NW and OB individuals; however for a similar low glucose level stimulus, hunger-induced food intake was greater in OB than NW individuals.

8.
Diabetes ; 68(1): 163-171, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327383

RESUMO

The impact of glycemic variability on brain glucose transport kinetics among individuals with type 1 diabetes mellitus (T1DM) remains unclear. Fourteen individuals with T1DM (age 35 ± 4 years; BMI 26.0 ± 1.4 kg/m2; HbA1c 7.6 ± 0.3) and nine healthy control participants (age 32 ± 4; BMI 23.1 ± 0.8; HbA1c 5.0 ± 0.1) wore a continuous glucose monitor (Dexcom) to measure hypoglycemia, hyperglycemia, and glycemic variability for 5 days followed by 1H MRS scanning in the occipital lobe to measure the change in intracerebral glucose levels during a 2-h glucose clamp (target glucose concentration 220 mg/dL). Hyperglycemic clamps were also performed in a rat model of T1DM to assess regional differences in brain glucose transport and metabolism. Despite a similar change in plasma glucose levels during the hyperglycemic clamp, individuals with T1DM had significantly smaller increments in intracerebral glucose levels (P = 0.0002). Moreover, among individuals with T1DM, the change in brain glucose correlated positively with the lability index (r = 0.67, P = 0.006). Consistent with findings in humans, streptozotocin-treated rats had lower brain glucose levels in the cortex, hippocampus, and striatum compared with control rats. These findings that glycemic variability is associated with brain glucose levels highlight the need for future studies to investigate the impact of glycemic variability on brain glucose kinetics.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Glucose/metabolismo , Adulto , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Hemoglobinas Glicadas , Humanos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipoglicemiantes/uso terapêutico , Masculino , Modelos Teóricos , Ratos , Ratos Sprague-Dawley
9.
Bone Rep ; 9: 154-158, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364642

RESUMO

CONTEXT: Most heritable causes of low bone mass in children occur due to mutations affecting type 1 collagen. We describe two related patients with low bone mass and fracture without mutations in the type 1 collagen genes. CASE DESCRIPTION: We describe the index case of a 10-year-old girl with low-impact fractures in childhood and her 59-year-old father with traumatic fractures in adulthood, both with low bone mineral density. They were found to have the same heterozygous missense mutation in the WNT1 gene (p.Gly222Arg), occurring in a highly conserved WNT motif in close proximity to the Frizzled binding site. CONCLUSIONS: The WNT-ligand WNT1, signaling through the canonical WNT-ß-catenin pathway, plays a critical role in skeletal development, adult skeletal homeostasis, and bone remodeling. Biallelic mutations have been described and are associated with moderate to severe osteogenesis imperfecta, in some cases with extra-skeletal manifestations. Patients with monoallelic mutations, as in our case, seem to present with low bone mineral density and less severe disease. The phenotypic difference between biallelic and monoallelic mutations highlights that the aberrant protein in monoallelic mutations may exert a dominant negative effect on the wild type protein as heterozygous carriers in families with biallelic disease are usually asymptomatic. With better understanding of disorders associated with WNT1 mutations, therapies targeting this signaling pathway may offer therapeutic benefit.

10.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046482

RESUMO

In rodent models, obesity and hyperglycemia alter cerebral glucose metabolism and glucose transport into the brain, resulting in disordered cerebral function as well as inappropriate responses to homeostatic and hedonic inputs. Whether similar findings are seen in the human brain remains unclear. In this study, 25 participants (9 healthy participants; 10 obese nondiabetic participants; and 6 poorly controlled, insulin- and metformin-treated type 2 diabetes mellitus (T2DM) participants) underwent 1H magnetic resonance spectroscopy scanning in the occipital lobe to measure the change in intracerebral glucose levels during a 2-hour hyperglycemic clamp (glucose ~220 mg/dl). The change in intracerebral glucose was significantly different across groups after controlling for age and sex, despite similar plasma glucose levels at baseline and during hyperglycemia. Compared with lean participants, brain glucose increments were lower in participants with obesity and T2DM. Furthermore, the change in brain glucose correlated inversely with plasma free fatty acid (FFA) levels during hyperglycemia. These data suggest that obesity and poorly controlled T2DM progressively diminish brain glucose responses to hyperglycemia, which has important implications for understanding not only the altered feeding behavior, but also the adverse neurocognitive consequences associated with obesity and T2DM.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Glucose/metabolismo , Hiperglicemia/complicações , Obesidade/sangue , Obesidade/complicações , Adulto , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/sangue , Feminino , Humanos , Insulina/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Diabetologia ; 60(9): 1586-1593, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28770321

RESUMO

Metformin is one of the most popular oral glucose-lowering medications, widely considered to be the optimal initial therapy for patients with type 2 diabetes mellitus. Interestingly, there still remains controversy regarding the drug's precise mechanism of action, which is thought to involve a reduction in hepatic glucose production. It is now recommended as first-line treatment in various guidelines, including that of the EASD and ADA. Its favoured status lies in its efficacy, low cost, weight neutrality and good safety profile. Other benefits have also been described, including improvements in certain lipids, inflammatory markers, and a reduction in cardiovascular events, apparently independent from the drug's glucose-lowering effect. Data have emerged questioning the previous reluctance to use this agent in those with mild to moderate chronic kidney disease. Regulations guiding its use in patients with stable, modest renal dysfunction have, as a result, become more lenient in recent years. With no long-term studies comparing it against newer glucose-lowering drugs, some of which have more robust evidence for cardioprotection, metformin's established role as 'foundation therapy' in type 2 diabetes may justifiably be challenged.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Animais , Biguanidas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...