Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 26(6): 065602, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25605224

RESUMO

We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

2.
Micron ; 40(1): 56-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18502137

RESUMO

Thin film structures consisting of nano-crystalline and amorphous silicon layers deposited on glass by plasma enhanced chemical vapour deposition have been studied by optical spectroscopy methods (transmittance, photo-thermal deflection spectroscopy and photo-current spectroscopy) while structure was examined by Raman spectroscopy. The nano-crystalline layers were grown on the same amorphous layers, using different radio-frequency (RF) discharge powers, leading to different structural and optical properties. The energy dependence of the absorption coefficient above the band gap agrees well to the bimodal size distribution of crystals and crystal fraction estimated by Raman spectroscopy. For energies below the band gap, the comparison of the absorption of the bi-layer systems with respect to single amorphous layer reveals that the samples produced at higher RF discharge present a higher disorder degree (Urbach edge increases) and higher number of structural defects (absorption related to the defects increases).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...