Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0210064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30625189

RESUMO

Over half of all children with autism spectrum disorders (ASD) have gastrointestinal (GI) co-morbidities including chronic constipation, diarrhea, and irritable bowel syndrome. The severity of these symptoms has been correlated with the degree of GI microbial dysbiosis. The study objective was to assess tolerability of a probiotic (Bifidobacterium infantis) in combination with a bovine colostrum product (BCP) as a source of prebiotic oligosaccharides and to evaluate GI, microbiome and immune factors in children with ASD and GI co-morbidities. This pilot study is a randomized, double blind, controlled trial of combination treatment (BCP + B. infantis) vs. BCP alone in a cross-over study in children ages 2-11 with ASD and GI co-morbidities (n = 8). This 12-week study included 5 weeks of probiotic-prebiotic supplementation, followed by a two-week washout period, and 5 weeks of prebiotic only supplementation. The primary outcome of tolerability was assessed using validated questionnaires of GI function and atypical behaviors, along with side effects. Results suggest that the combination treatment is well-tolerated in this cohort. The most common side effect was mild gassiness. Some participants on both treatments saw a reduction in the frequency of certain GI symptoms, as well as reduced occurrence of particular aberrant behaviors. Improvement may be explained by a reduction in IL-13 and TNF-α production in some participants. Although limited conclusions can be drawn from this small pilot study, the results support the need for further research into the efficacy of these treatments.


Assuntos
Transtorno Autístico/tratamento farmacológico , Colostro , Gastroenteropatias/tratamento farmacológico , Probióticos/uso terapêutico , Animais , Transtorno Autístico/fisiopatologia , Bovinos , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Gastroenteropatias/fisiopatologia , Humanos , Interleucina-13/metabolismo , Masculino , Prebióticos , Fator de Necrose Tumoral alfa/metabolismo
2.
Mucosal Immunol ; 12(1): 200-211, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327532

RESUMO

Pro-inflammatory cytokine TNFα antagonizes regulatory T cell (Treg) suppressive function with a measurable reduction of IL-10 protein secretion. Tregs are critical to suppress excessive immune activation, particularly within the intestine where high antigenic loads elicit chronic subclinical immune activation. Employing a TNFα-driven murine inflammatory bowel disease (IBD) model (TNFΔARE/+), which mirrors the Treg expansion and transmural ileitis seen in Crohn's disease, we demonstrate that the TNFα-mediated loss of Treg suppressive function coincides with induction of a specific miRNA, miR-106a in both humans and mice, via NFκB promoter binding to suppress post-transcriptional regulation of IL-10 release. Elevation of miR-106a and impaired Treg function in this model recapitulate clinical data from IBD patients. MiR-106a deficiency promotes Treg induction, suppressive function and IL-10 production in vitro. MiR-106a knockout attenuated chronic murine ileitis, whereas T cell restricted deficiency of miR-106a attenuated adoptive transfer colitis. In both models, attenuated inflammation coincided with suppression of both Th1 and Th17 cell subset expansion within the intestinal lamina propria. Collectively, our data demonstrate impaired Treg suppressive function in a murine IBD model consistent with human disease and support the potential for inhibition of miR-106a as a future therapeutic approach to treat chronic inflammatory conditions including IBD.


Assuntos
Inflamação/genética , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/imunologia , MicroRNAs/genética , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Hidrolases de Éster Carboxílico/genética , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , Fator de Necrose Tumoral alfa/genética
3.
Front Nutr ; 5: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868601

RESUMO

Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the "fragile gut" in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the "fragile gut" in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized protein source/processing, all to improve GI function in children with ASD.

4.
Crit Rev Food Sci Nutr ; 57(15): 3313-3331, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26713355

RESUMO

Proteins are not equally digestible-their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources, and processing methods must be tailored to the consumer's digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health.


Assuntos
Digestão/fisiologia , Manipulação de Alimentos/métodos , Proteínas/metabolismo , Ração Animal , Dieta , Fezes , Fermentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...