Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 57(8): 1735-45, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16760420

RESUMO

Leaf senescence and associated changes in redox components were monitored in commercial pea (Pisum sativum L. cv. Phoenix) plants grown under different nitrogen regimes for 12 weeks until both nodules and leaves had fully senesced. One group of plants was inoculated with Rhizobium leguminosarum and grown with nutrient solution without nitrogen. A second group was not inoculated and these were grown on complete nutrient solution containing nitrogen. Leaf senescence was evident at 11 weeks in both sets of plants as determined by decreases in leaf chlorophyll and protein. However, a marked decrease in photosynthesis was observed in nodulated plants at 9 weeks. Losses in the leaf ascorbate pool preceded leaf senescence, but leaf glutathione decreased only during the senescence phase. Large decreases in dehydroascorbate reductase and catalase activities were observed after 9 weeks, but the activities of other antioxidant enzymes remained high even at 11 weeks. The extent of lipid peroxidation, the number of protein carbonyl groups and the level of H(2)O(2) in the leaves of both nitrate-fed and nodulated plants were highest at the later stages of senescence. At 12 weeks, the leaves of nodulated plants had more protein carbonyl groups and greater lipid peroxidation than the nitrate-fed controls. These results demonstrate that the leaves of nodulated plants undergo an earlier inhibition of photosynthesis and suffer enhanced oxidation during the senescence phase than those from nitrate-fed plants.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Nitrogênio/metabolismo , Pisum sativum/metabolismo , Folhas de Planta/metabolismo , Ácido Ascórbico/metabolismo , Fixação de Nitrogênio , Oxirredução , Pisum sativum/enzimologia , Pisum sativum/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Rhizobium leguminosarum/fisiologia , Simbiose/fisiologia
2.
Plant Physiol ; 121(3): 921-928, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10557241

RESUMO

The peroxisomal localization and characterization of NADP-dependent isocitrate dehydrogenase (perICDH) in young and senescent pea (Pisum sativum) leaves was studied by subcellular fractionation, kinetic analysis, immunoblotting, and immunoelectron microscopy. The subunit molecular mass for perICDH determined by immunoblotting was 46 kD. By isoelectric focusing (IEF) of the peroxisomal matrix fraction, the NADP-ICDH activity was resolved into four isoforms, perICDH-1 to perICDH-4, with isoelectric points (pIs) of 6.0, 5.6, 5.4, and 5.2, respectively. The kinetic properties of the NADP-ICDH in peroxisomes from young and senescent pea leaves were analyzed. The maximum initial velocity was the same in peroxisomes from young and senescent leaves, while the Michaelis constant value in senescent leaf peroxisomes was 11-fold lower than in young leaf peroxisomes. The protein levels of NADP-ICDH in peroxisomes were not altered during senescence. The kinetic behavior of this enzyme suggests a possible fine control of enzymatic activity by modulation of its Michaelis constant during the natural senescence of pea leaves. After embedding, electron microscopy immunogold labeling of NADP-ICDH confirmed that this enzyme was localized in the peroxisomal matrix. Peroxisomal NADP-ICDH represents an alternative dehydrogenase in these cell organelles and may be the main system for the reduction of NADP to NADPH for its re-utilization in the peroxisomal metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA