Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5535, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130983

RESUMO

Silicon (Si) is one of the most abundant elements on Earth, and it is the most widely used semiconductor. Despite extensive study, some properties of Si, such as its behaviour under dynamic compression, remain elusive. A detailed understanding of Si deformation is crucial for various fields, ranging from planetary science to materials design. Simulations suggest that in Si the shear stress generated during shock compression is released via a high-pressure phase transition, challenging the classical picture of relaxation via defect-mediated plasticity. However, direct evidence supporting either deformation mechanism remains elusive. Here, we use sub-picosecond, highly-monochromatic x-ray diffraction to study (100)-oriented single-crystal Si under laser-driven shock compression. We provide the first unambiguous, time-resolved picture of Si deformation at ultra-high strain rates, demonstrating the predicted shear release via phase transition. Our results resolve the longstanding controversy on silicon deformation and provide direct proof of strain rate-dependent deformation mechanisms in a non-metallic system.

2.
Nat Commun ; 12(1): 5202, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471110

RESUMO

Benzene (C6H6), while stable under ambient conditions, can become chemically reactive at high pressures and temperatures, such as under shock loading conditions. Here, we report in situ x-ray diffraction and small angle x-ray scattering measurements of liquid benzene shocked to 55 GPa, capturing the morphology and crystalline structure of the shock-driven reaction products at nanosecond timescales. The shock-driven chemical reactions in benzene observed using coherent XFEL x-rays were a complex mixture of products composed of carbon and hydrocarbon allotropes. In contrast to the conventional description of diamond, methane and hydrogen formation, our present results indicate that benzene's shock-driven reaction products consist of layered sheet-like hydrocarbon structures and nanosized carbon clusters with mixed sp2-sp3 hybridized bonding. Implications of these findings range from guiding shock synthesis of novel compounds to the fundamentals of carbon transport in planetary physics.

3.
Rev Sci Instrum ; 84(1): 015003, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23387683

RESUMO

An all optical-fiber-based approach to measuring high explosive detonation front position and velocity is described. By measuring total light return using an incoherent light source reflected from a linearly chirped fiber Bragg grating sensor in contact with the explosive, dynamic mapping of the detonation front position and velocity versus time is obtained. We demonstrate two calibration procedures and provide several examples of detonation front measurements: PBX 9502 cylindrical rate stick, radial detonation front in PBX 9501, and PBX 9501 detonation along curved meridian line. In the cylindrical rate stick measurement, excellent agreement with complementary diagnostics (electrical pins and streak camera imaging) is achieved, demonstrating accuracy in the detonation front velocity to below the 0.3% level when compared to the results from the pin data. Finally, an estimate on the linear spatial and temporal resolution of the system shows that sub-mm and sub-µs levels are attainable with proper consideration of the recording speed, detection sensitivity, spectrum, and chirp properties of the grating.

4.
Opt Lett ; 34(11): 1618-20, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19488126

RESUMO

We present what we believe to be the first implementation of Fourier transform (FT) holography using a tabletop coherent x-ray source. By applying curvature correction to compensate for the large angles inherent in high-NA coherent imaging, we achieve image resolution of 89 nm using high-harmonic beams at a wavelength of 29 nm. Moreover, by combining holography with iterative phase retrieval, we improve the image resolution to <53 nm. We also demonstrate that FT holography can be used effectively with short exposure times of 30 s. This technique will enable biological and materials microscopy with simultaneously high spatial and temporal resolution on a tabletop soft-x-ray source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...