Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829212

RESUMO

Here, we report the first time- and angle-resolved photoemission spectroscopy (TR-ARPES) with the new Fermiologics "FeSuMa" analyzer. The new experimental setup has been commissioned at the Artemis laboratory of the UK Central Laser Facility. We explain here some of the advantages of the FeSuMa for TR-ARPES and discuss how its capabilities relate to those of hemispherical analyzers and momentum microscopes. We have integrated the FeSuMa into an optimized pump-probe beamline that permits photon-energy (i.e., kz)-dependent scanning, using probe energies generated from high harmonics in a gas jet. The advantages of using the FeSuMa in this situation include the possibility of taking advantage of its "fisheye" mode of operation.

2.
Adv Sci (Weinh) ; 10(22): e2301243, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37236159

RESUMO

2D materials provide a rich platform to study novel physical phenomena arising from quantum confinement of charge carriers. Many of these phenomena are discovered by surface sensitive techniques, such as photoemission spectroscopy, that work in ultra-high vacuum (UHV). Success in experimental studies of 2D materials, however, inherently relies on producing adsorbate-free, large-area, high-quality samples. The method that yields 2D materials of highest quality is mechanical exfoliation from bulk-grown samples. However, as this technique is traditionally performed in a dedicated environment, the transfer of samples into vacuum requires surface cleaning that might diminish the quality of the samples. In this article, a simple method for in situ exfoliation directly in UHV is reported, which yields large-area, single-layered films. Multiple metallic and semiconducting transition metal dichalcogenides are exfoliated in situ onto Au, Ag, and Ge. The exfoliated flakes are found to be of sub-millimeter size with excellent crystallinity and purity, as supported by angle-resolved photoemission spectroscopy, atomic force microscopy, and low-energy electron diffraction. The approach is well-suited for air-sensitive 2D materials, enabling the study of a new suite of electronic properties. In addition, the exfoliation of surface alloys and the possibility of controlling the substrate-2D material twist angle is demonstrated.

3.
Nano Lett ; 21(5): 1968-1975, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33600187

RESUMO

The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump-probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron-lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.

4.
Phys Rev Lett ; 125(23): 236403, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337178

RESUMO

The presence of an electrical transport current in a material is one of the simplest and most important realizations of nonequilibrium physics. The current density breaks the crystalline symmetry and can give rise to dramatic phenomena, such as sliding charge density waves, insulator-to-metal transitions, or gap openings in topologically protected states. Almost nothing is known about how a current influences the electron spectral function, which characterizes most of the solid's electronic, optical, and chemical properties. Here we show that angle-resolved photoemission spectroscopy with a nanoscale light spot provides not only a wealth of information on local equilibrium properties, but also opens the possibility to access the local nonequilibrium spectral function in the presence of a transport current. Unifying spectroscopic and transport measurements in this way allows simultaneous noninvasive local measurements of the composition, structure, many-body effects, and carrier mobility in the presence of high current densities. In the particular case of our graphene-based device, we are able to correlate the presence of structural defects with locally reduced carrier lifetimes in the spectral function and a locally reduced mobility with a spatial resolution of 500 nm.

5.
Nat Commun ; 10(1): 3283, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337765

RESUMO

Control of atomic-scale interfaces between materials with distinct electronic structures is crucial for the design and fabrication of most electronic devices. In the case of two-dimensional materials, disparate electronic structures can be realized even within a single uniform sheet, merely by locally applying different vertical gate voltages. Here, we utilize the inherently nano-structured single layer and bilayer graphene on silicon carbide to investigate lateral electronic structure variations in an adjacent single layer of tungsten disulfide (WS2). The electronic band alignments are mapped in energy and momentum space using angle-resolved photoemission with a spatial resolution on the order of 500 nm (nanoARPES). We find that the WS2 band offsets track the work function of the underlying single layer and bilayer graphene, and we relate such changes to observed lateral patterns of exciton and trion luminescence from WS2.

6.
Langmuir ; 31(35): 9700-6, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26308879

RESUMO

We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

7.
Nano Lett ; 12(12): 6187-91, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23131144

RESUMO

In this Letter we report a comparative study, in the infrared regime, of surface plasmon polariton (SPP) propagation in epitaxially grown Ag films and in polycrystalline Ag films, all grown on Si substrates. Plasmonic resonance features are analyzed using extraordinary optical transmission (EOT) measurements, and SPP band structures for the two dielectric/metal interfaces are investigated for both types of film. At the Si/Ag interface, EOT spectra show almost identical features for epitaxial and polycrystalline Ag films and are characterized by sharp Fano resonances. On the contrary, at the air/Ag interface, dramatic differences are observed: while the epitaxial film continues to exhibit sharp Fano resonances, the polycrystalline film shows only broad spectral features and much lower transmission intensities. In corroboration with theoretical simulations, we find that surface roughness plays a critical role in SPP propagation for this wavelength range.

8.
Science ; 337(6093): 450-3, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22837524

RESUMO

A nanolaser is a key component for on-chip optical communications and computing systems. Here, we report on the low-threshold, continuous-wave operation of a subdiffraction nanolaser based on surface plasmon amplification by stimulated emission of radiation. The plasmonic nanocavity is formed between an atomically smooth epitaxial silver film and a single optically pumped nanorod consisting of an epitaxial gallium nitride shell and an indium gallium nitride core acting as gain medium. The atomic smoothness of the metallic film is crucial for reducing the modal volume and plasmonic losses. Bimodal lasing with similar pumping thresholds was experimentally observed, and polarization properties of the two modes were used to unambiguously identify them with theoretically predicted modes. The all-epitaxial approach opens a scalable platform for low-loss, active nanoplasmonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...