Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 11: 1076686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969291

RESUMO

This report describes a pediatric patient who underwent chimeric antigen receptor (CAR) T-cell therapy for refractory B-cell acute lymphoblastic leukemia (B-ALL) four years prior, with resultant hypogammaglobulinemia for which he was receiving weekly subcutaneous immune globulin. He presented with persistent fever, dry cough, and a tingling sensation in his toes following a confirmed COVID-19 infection 3 weeks prior. His initial nasopharyngeal SARS-CoV-2 PCR was negative, leading to an extensive workup for other infections. He was ultimately diagnosed with persistent lower respiratory tract COVID-19 infection based on positive SARS-CoV-2 PCR from bronchoalveolar lavage (BAL) sampling. He was treated with a combination of remdesivir (antiviral) and casirivimab/imdevimab (combination monoclonal antibodies) with immediate improvement in fever, respiratory symptoms, and neurologic symptoms.

2.
Med Phys ; 39(5): 2578-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559628

RESUMO

PURPOSE: A time-varying magnetic field can cause unpleasant peripheral nerve stimulation (PNS) when the maximum excursion of the magnetic field (ΔB) is above a frequency-dependent threshold level [P. Mansfield and P. R. Harvey, Magn. Reson. Med. 29, 746-758 (1993)]. Clinical and research magnetic resonance imaging (MRI) gradient systems have been designed to avoid such bioeffects by adhering to regulations and guidelines established on the basis of clinical trials. Those trials, generally employing sinusoidal waveforms, tested human responses to magnetic fields at frequencies between 0.5 and 10 kHz [W. Irnich and F. Schmitt, Magn. Reson. Med. 33, 619-623 (1995), T. F. Budinger et al., J. Comput. Assist. Tomogr. 15, 909-914 (1991), and D. J. Schaefer et al., J. Magn. Reson. Imaging 12, 20-29 (2000)]. PNS thresholds for frequencies higher than 10 kHz had been extrapolated, using physiological models [J. P. Reilly et al., IEEE Trans. Biomed. Eng. BME-32(12), 1001-1011 (1985)]. The present study provides experimental data on human PNS thresholds to oscillating magnetic field stimulation from 2 to 183 kHz. Sinusoidal waveforms were employed for several reasons: (1) to facilitate comparison with earlier reports that used sine waves, (2) because prior designers of fast gradient hardware for generalized waveforms (e.g., including trapezoidal pulses) have employed quarter-sine-wave resonant circuits to reduce the rise- and fall-times of pulse waveforms, and (3) because sinusoids are often used in fast pulse sequences (e.g., spiral scans) [S. Nowak, U.S. patent 5,245,287 (14 September 1993) and K. F. King and D. J. Schaefer, J. Magn. Reson. Imaging 12, 164-170 (2000)]. METHODS: An IRB-approved prospective clinical trial was performed, involving 26 adults, in which one wrist was exposed to decaying sinusoidal magnetic field pulses at frequencies from 2 to 183 kHz and amplitudes up to 0.4 T. Sham exposures (i.e., with no magnetic fields) were applied to all subjects. RESULTS: For 0.4 T pulses at 2, 25, 59, 101, and 183 kHz, stimulation was reported by 22 (84.6%), 24 (92.3%), 15 (57.7%), 2 (7.7%), and 1 (3.8%) subjects, respectively. CONCLUSIONS: The probability of PNS due to brief biphasic time-varying sinusoidal magnetic fields with magnetic excursions up to 0.4 T is shown to decrease significantly at and above 101 kHz. This phenomenon may have particular uses in dynamic scenarios (e.g., cardiac imaging) and in studying processes with short decay times (e.g., electron paramagnetic resonance imaging, bone and solids imaging). The study suggests the possibility of new designs for human and preclinical MRI systems that may be useful in clinical practice and scientific research.


Assuntos
Campos Magnéticos/efeitos adversos , Nervos Periféricos/fisiologia , Adulto , Humanos , Probabilidade , Sensação/fisiologia , Limiar Sensorial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...