Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(8): e105817, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157792

RESUMO

Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds.


Assuntos
Acridinas/farmacologia , Antimaláricos/farmacologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Células Cultivadas , Eritrócitos/parasitologia , Feminino , Humanos , Concentração Inibidora 50 , Malária Falciparum/transmissão , Masculino , Oocistos/efeitos dos fármacos , Oocistos/fisiologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/fisiologia
2.
Eukaryot Cell ; 13(10): 1337-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25148832

RESUMO

Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia.


Assuntos
Anemia/parasitologia , Eritrócitos/efeitos dos fármacos , Proteínas Hemolisinas/metabolismo , Plasmodium falciparum/química , Anemia/genética , Anemia/patologia , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Proteínas de Fluorescência Verde , Proteínas Hemolisinas/farmacologia , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Oócitos/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Xenopus laevis/metabolismo
3.
J Med Chem ; 57(11): 4521-31, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24786226

RESUMO

Atg8 is a ubiquitin-like autophagy protein in eukaryotes that is covalently attached (lipidated) to the elongating autophagosomal membrane. Autophagy is increasingly appreciated as a target in diverse diseases from cancer to eukaryotic parasitic infections. Some of the autophagy machinery is conserved in the malaria parasite, Plasmodium. Although Atg8's function in the parasite is not well understood, it is essential for Plasmodium growth and survival and partially localizes to the apicoplast, an indispensable organelle in apicomplexans. Here, we describe the identification of inhibitors from the Malaria Medicine Venture Malaria Box against the interaction of PfAtg8 with its E2-conjugating enzyme, PfAtg3, by surface plasmon resonance. Inhibition of this protein-protein interaction prevents PfAtg8 lipidation with phosphatidylethanolamine. These small molecule inhibitors share a common scaffold and have activity against both blood and liver stages of infection by Plasmodium falciparum. We have derivatized this scaffold into a functional platform for further optimization.


Assuntos
Antimaláricos/química , Bases de Dados de Compostos Químicos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/farmacologia , Sítios de Ligação , Sangue , Estágios do Ciclo de Vida , Fígado/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Piridinas/química , Piridinas/farmacologia , Tiazóis/química , Tiazóis/farmacologia
4.
Antimicrob Agents Chemother ; 58(2): 820-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24247136

RESUMO

Quinine and other cinchona-derived alkaloids, although recently supplanted by the artemisinins (ARTs), continue to be important for treatment of severe malaria. Quinine and quinidine have narrow therapeutic indices, and a safer quinine analog is desirable, particularly with the continued threat of antimalarial drug resistance. Hydroxyethylapoquinine (HEAQ), used at 8 g a day for dosing in humans in the 1930s and halving mortality from bacterial pneumonias, was shown to cure bird malaria in the 1940s and was also reported as treatment for human malaria cases. Here we describe synthesis of HEAQ and its novel stereoisomer hydroxyethylapoquinidine (HEAQD) along with two intermediates, hydroxyethylquinine (HEQ) and hydroxyethylquinidine (HEQD), and demonstrate comparable but elevated antimalarial 50% inhibitory concentrations (IC50) of 100 to 200 nM against Plasmodium falciparum quinine-sensitive strain 3D7 (IC50, 56 nM). Only HEAQD demonstrated activity against quinine-tolerant P. falciparum strains Dd2 and INDO with IC50s of 300 to 700 nM. HEQD had activity only against Dd2 with an IC50 of 313 nM. In the lethal mouse malaria model Plasmodium berghei ANKA, only HEQD had activity at 20 mg/kg of body weight comparable to that of the parent quinine or quinidine drugs measured by parasite inhibition and 30-day survival. In addition, HEQ, HEQD, and HEAQ (IC50 ≥ 90 µM) have little to no human ether-à-go-go-related gene (hERG) channel inhibition expressed in CHO cells compared to HEAQD, quinine, and quinidine (hERG IC50s of 27, 42, and 4 µM, respectively). HEQD more closely resembled quinine in vitro and in vivo for Plasmodium inhibition and demonstrated little hERG channel inhibition, suggesting that further optimization and preclinical studies are warranted for this molecule.


Assuntos
Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinina/análogos & derivados , Animais , Antimaláricos/síntese química , Células CHO , Cricetulus , Resistência a Medicamentos/efeitos dos fármacos , Canal de Potássio ERG1 , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Expressão Gênica , Humanos , Concentração Inibidora 50 , Malária/mortalidade , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Quinidina/farmacologia , Quinina/síntese química , Quinina/farmacologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...