Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Physiol ; 170(4): 1917-28, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26864017

RESUMO

Here, we report a form of oligonucleotide-directed mutagenesis for precision genome editing in plants that uses single-stranded oligonucleotides (ssODNs) to precisely and efficiently generate genome edits at DNA strand lesions made by DNA double strand break reagents. Employing a transgene model in Arabidopsis (Arabidopsis thaliana), we obtained a high frequency of precise targeted genome edits when ssODNs were introduced into protoplasts that were pretreated with the glycopeptide antibiotic phleomycin, a nonspecific DNA double strand breaker. Simultaneous delivery of ssODN and a site-specific DNA double strand breaker, either transcription activator-like effector nucleases (TALENs) or clustered, regularly interspaced, short palindromic repeats (CRISPR/Cas9), resulted in a much greater targeted genome-editing frequency compared with treatment with DNA double strand-breaking reagents alone. Using this site-specific approach, we applied the combination of ssODN and CRISPR/Cas9 to develop an herbicide tolerance trait in flax (Linum usitatissimum) by precisely editing the 5'-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) genes. EPSPS edits occurred at sufficient frequency that we could regenerate whole plants from edited protoplasts without employing selection. These plants were subsequently determined to be tolerant to the herbicide glyphosate in greenhouse spray tests. Progeny (C1) of these plants showed the expected Mendelian segregation of EPSPS edits. Our findings show the enormous potential of using a genome-editing platform for precise, reliable trait development in crop plants.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Antibacterianos/farmacologia , Arabidopsis/genética , Endonucleases/metabolismo , Edição de Genes , Engenharia Genética , Genoma de Planta , Oligonucleotídeos/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Alelos , Arabidopsis/efeitos dos fármacos , Sequência de Bases , Sistemas CRISPR-Cas/genética , Linho/genética , Loci Gênicos , Glicina/análogos & derivados , Glicina/toxicidade , Glicopeptídeos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Glifosato
3.
Yeast ; 29(7): 275-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22674789

RESUMO

Double-strand DNA breaks are a serious threat to cellular viability and yeast systems have proved invaluable in helping to understand how these potentially toxic lesions are sensed and repaired. An important method to study the processing of DNA breaks in the budding yeast Saccharomyces cerevisiae is to introduce a unique double-strand break into the genome by regulating the expression of the site-specific HO endonuclease with a galactose inducible promoter. Variations of the HO site-specific DSB assay have been adapted to many organisms, but the methodology has seen only limited use in the fission yeast Schizosaccharomyces pombe because of the lack of a promoter capable of inducing endonuclease expression on a relatively short time scale (~1 h). We have overcome this limitation by developing a new assay in which expression of the homing endonuclease I-PpoI is tightly regulated with a tetracycline-inducible promoter. We show that induction of the I-PpoI endonuclease produces rapid cutting of a defined cleavage site (> 80% after 1 h), efficient cell cycle arrest and significant accumulation of the checkpoint protein Crb2 at break-adjacent regions in a manner that is analogous to published findings with DSBs produced by an acute exposure to ionizing irradiation. This assay provides an important new tool for the fission yeast community and, because many aspects of mammalian chromatin organization have been well-conserved in Sz. pombe but not in S. cerevisiae, also offers an attractive system to decipher the role of chromatin structure in modulating the repair of double-stranded DNA breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Técnicas Genéticas , Schizosaccharomyces/genética , Reparo do DNA , Endonucleases/genética , Endonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Mol Cell Biol ; 30(19): 4722-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20679488

RESUMO

Activation of DNA damage checkpoints requires the rapid accumulation of numerous factors to sites of genomic lesions, and deciphering the mechanisms of this targeting is central to our understanding of DNA damage response. Histone modification has recently emerged as a critical element for the correct localization of damage response proteins, and one key player in this context is the fission yeast checkpoint mediator Crb2. Accumulation of Crb2 at ionizing irradiation-induced double-strand breaks (DSBs) requires two distinct histone marks, dimethylated H4 lysine 20 (H4K20me2) and phosphorylated H2AX (pH2AX). A tandem tudor motif in Crb2 directly binds H4K20me2, and this interaction is required for DSB targeting and checkpoint activation. Similarly, pH2AX is required for Crb2 localization to DSBs and checkpoint control. Crb2 can directly bind pH2AX through a pair of C-terminal BRCT repeats, but the functional significance of this binding has been unclear. Here we demonstrate that loss of its pH2AX-binding activity severely impairs the ability of Crb2 to accumulate at ionizing irradiation-induced DSBs, compromises checkpoint signaling, and disrupts checkpoint-mediated cell cycle arrest. These impairments are similar to that reported for abolition of pH2AX or mutation of the H4K20me2-binding tudor motif of Crb2. Intriguingly, a combined ablation of its two histone modification binding modules yields a strikingly additive reduction in Crb2 activity. These observations argue that binding of the Crb2 BRCT repeats to pH2AX is critical for checkpoint activity and provide new insight into the mechanisms of chromatin-mediated genome stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sítios de Ligação/genética , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Histonas/genética , Lisina/genética , Lisina/metabolismo , Metilação , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Treonina/genética , Treonina/metabolismo
5.
J Biol Chem ; 283(48): 33168-74, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18826944

RESUMO

Histone lysine methylation is an important chromatin modification that can be catalyzed to a mono-, di-, or tri-methyl state. An ongoing challenge is to decipher how these different methyllysine histone marks can mediate distinct aspects of chromatin function. The fission yeast checkpoint protein Crb2 is rapidly targeted to sites of DNA damage after genomic insult, and this recruitment requires methylation of histone H4 lysine 20 (H4K20). Here we show that the tandem tudor domains of Crb2 preferentially bind the di-methylated H4K20 residue. Loss of this interaction by disrupting either the tudor-binding motif or the H4K20 methylating enzyme Set9/Kmt5 ablates Crb2 localization to double-strand breaks and impairs checkpoint function. Further we show that dimethylation, but not tri-methylation, of H4K20 is required for Crb2 localization, checkpoint function, and cell survival after DNA damage. These results argue that the di-methyl H4K20 modification serves as a binding target that directs Crb2 to sites of genomic lesions and defines an important genome integrity pathway mediated by a specific methyl-lysine histone mark.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , DNA Fúngico/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos/fisiologia , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , DNA Fúngico/genética , Genoma Fúngico/fisiologia , Instabilidade Genômica/fisiologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Histonas/genética , Lisina/genética , Lisina/metabolismo , Metilação , Ligação Proteica/fisiologia , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Cell ; 119(5): 603-14, 2004 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-15550243

RESUMO

Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylation in the fission yeast Schizosaccharomyces pombe. Surprisingly, H4-K20 methylation does not have any apparent role in the regulation of gene expression or heterochromatin function. Rather, we find the modification has a role in DNA damage response. Loss of Set9 activity or mutation of H4-K20 markedly impairs cell survival after genotoxic challenge and compromises the ability of cells to maintain checkpoint mediated cell cycle arrest. Genetic experiments link Set9 to Crb2, a homolog of the mammalian checkpoint protein 53BP1, and the enzyme is required for Crb2 localization to sites of DNA damage. These results argue that H4-K20 methylation functions as a "histone mark" required for the recruitment of the checkpoint protein Crb2.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Regulação Fúngica da Expressão Gênica/genética , Genes cdc/fisiologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Mutação/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Metiltransferases , Transporte Proteico/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
EMBO J ; 23(4): 719-27, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-14765106

RESUMO

The transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), plays a key role in the regulation of gene expression by RNA polymerase II. The structure of yeast TFIID, as determined by electron microscopy and digital image analysis, is formed by three lobes, labelled A-C, connected by thin linking domains. Immunomapping revealed that TFIID contains two copies of the WD-40 repeat-containing TAF5 and that TAF5 contributes to the linkers since its C- and N-termini were found in different lobes. This property was confirmed by the finding that a recombinant complex containing TAF5 complexed with six histone fold containing TAFs was able to form a trilobed structure. Moreover, the N-terminal domain of TAF1 was mapped in lobe C, whereas the histone acetyltransferase domain resides in lobe A along with TAF7. TBP was found in the linker domain between lobes A and C in a way that the N-terminal 100 residues of TAF1 are spanned over it. The implications of these data with regard to TFIID function are discussed.


Assuntos
Proteínas Fúngicas/química , Fatores Associados à Proteína de Ligação a TATA/química , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIID/química , Acetiltransferases/química , Histona Acetiltransferases , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase II/química , Proteínas Recombinantes/química
9.
J Biol Chem ; 278(9): 6779-86, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12501245

RESUMO

An important goal is to identify the direct activation domain (AD)-interacting components of the transcriptional machinery within the context of native complexes. Toward this end, we first demonstrate that the multisubunit TFIID, SAGA, mediator, and Swi/Snf coactivator complexes from transcriptionally competent whole-cell yeast extracts were all capable of specifically interacting with the prototypic acidic ADs of Gal4 and VP16. We then used hexahistidine tags as genetically introduced activation domain-localized cross-linking receptors. In combination with immunological reagents against all subunits of TFIID and SAGA, we systematically identified the direct AD-interacting subunits within the AD-TFIID and AD-SAGA coactivator complexes enriched from whole-cell extracts and confirmed these results using purified TFIID and partially purified SAGA. Both ADs directly cross-linked to TBP and to a subset of TFIID and SAGA subunits that carry histone-fold motifs.


Assuntos
Acetiltransferases/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Acetiltransferases/química , Motivos de Aminoácidos , Sítios de Ligação , Endopeptidases/metabolismo , Histidina/química , Histona Acetiltransferases , Histonas , Modelos Biológicos , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Leveduras
10.
Mol Cell Biol ; 22(16): 6000-13, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12138208

RESUMO

We previously defined Saccharomyces cerevisiae TFIID as a 15-subunit complex comprised of the TATA binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). In this report we give a detailed biochemical characterization of this general transcription factor. We have shown that yeast TFIID efficiently mediates both basal and activator-dependent transcription in vitro and displays TATA box binding activity that is functionally distinct from that of TBP. Analyses of the stoichiometry of TFIID subunits indicated that several TAFs are present at more than 1 copy per TFIID complex. This conclusion was further supported by coimmunoprecipitation experiments with a systematic family of (pseudo)diploid yeast strains that expressed epitope-tagged and untagged alleles of the genes encoding TFIID subunits. Based on these data, we calculated a native molecular mass for monomeric TFIID. Purified TFIID behaved in a fashion consistent with this calculated molecular mass in both gel filtration and rate-zonal sedimentation experiments. Quite surprisingly, although the TAF subunits of TFIID cofractionated as a single complex, TBP did not comigrate with the TAFs during either gel filtration chromatography or rate-zonal sedimentation, suggesting that TBP has the ability to dynamically associate with the TFIID TAFs. The results of direct biochemical exchange experiments confirmed this hypothesis. Together, our results represent a concise molecular characterization of the general transcription factor TFIID from S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFII/química , Animais , DNA/metabolismo , Pegada de DNA , Humanos , Substâncias Macromoleculares , Peso Molecular , Regiões Promotoras Genéticas , Subunidades Proteicas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIA , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/isolamento & purificação , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica
11.
Mol Cell Biol ; 22(13): 4723-38, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052880

RESUMO

The general transcription factor TFIID is a multisubunit complex of TATA-binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). Although TFIID constituents are required for transcription initiation of most mRNA encoding genes, the mechanism of TFIID action remains unclear. To gain insight into TFIID function, we sought to generate a proteomic catalogue of proteins specifically interacting with TFIID subunits. Toward this end, TFIID was systematically immunopurified by using polyclonal antibodies directed against each subunit, and the constellation of TBP- and TAF-associated proteins was directly identified by coupled multidimensional liquid chromatography and tandem mass spectrometry. A number of novel protein-protein associations were observed, and several were characterized in detail. These interactions include association between TBP and the RSC chromatin remodeling complex, the TAF17p-dependent association of the Swi6p transactivator protein with TFIID, and the identification of three novel subunits of the SAGA acetyltransferase complex, including a putative ubiquitin-specific protease component. Our results provide important new insights into the mechanisms of mRNA gene transcription and demonstrate the feasibility of constructing a complete proteomic interaction map of the eukaryotic transcription apparatus.


Assuntos
Proteínas Fúngicas/metabolismo , Espectrometria de Massas/métodos , Fatores Associados à Proteína de Ligação a TATA , Fatores de Transcrição TFII/metabolismo , Leveduras/genética , Leveduras/metabolismo , Cromatografia Líquida/métodos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/imunologia , Imunoquímica/métodos , Mutação , Proteoma , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Mol Cell Biol ; 22(9): 3178-93, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11940675

RESUMO

The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/genética , Composição de Bases , Western Blotting , Ciclo Celular , Mapeamento Cromossômico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Substâncias Macromoleculares , Complexos Multiproteicos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fator de Transcrição TFIID , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição TFII/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...