Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 863116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677238

RESUMO

Capturing forest disturbances over time is increasingly important to determine the ecosystem's capacity to recover as well as aiding a timely response of foresters. With changes due to climate change increasing the frequencies, a better understanding of forest disturbances and their role in historical development is needed to, on the one hand, develop forest management approaches promoting ecosystem resilience and, on the other hand, provide quick and spatially explicit information to foresters. A large, publicly available satellite imagery spanning more than two decades for large areas of the Earth's surface at varying spatial and temporal resolutions represents a vast, free data source for this. The challenge is 2-fold: (1) obtaining reliable information on forest condition and development from satellite data requires not only quantification of forest loss but rather a differentiated assessment of the extent and severity of forest degradation; (2) standardized and efficient processing routines both are needed to bridge the gap between remote-sensing signals and conventional forest condition parameters to enable forest managers for the operational use of the data. Here, we investigated abiotic and biotic disturbances based on a set of ground validated occurrences in various forest areas across Germany to build disturbance response chronologies and examine event-specific patterns. The proposed workflow is based on the R-package "npphen" for non-parametric vegetation phenology reconstruction and anomaly detection using MODIS EVI time series data. Results show the potential to detect distinct disturbance responses in forest ecosystems and reveal event-specific characteristics. Difficulties still exist for the determination of, e.g., scattered wind throw, due to its subpixel resolution, especially in highly fragmented landscapes and small forest patches. However, the demonstrated method shows potential for operational use as a semi-automatic system to augment terrestrial monitoring in the forestry sector. Combining the more robust EVI and the assessment of the phenological series at a pixel-by-pixel level allows for a changing species cover without false classification as forest loss.

2.
Sci Rep ; 12(1): 4764, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306516

RESUMO

European ash (Fraxinus excelsior) and narrow-leafed ash (F. angustifolia) are keystone forest tree species with a broad ecological amplitude and significant economic importance. Besides global warming both species are currently under significant threat by an invasive fungal pathogen that has been spreading progressively throughout the continent for almost three decades. Ash dieback caused by the ascomycete Hymenoscyphus fraxineus is capable of damaging ash trees of all age classes and often ultimately leads to the death of a tree after years of progressively developing crown defoliation. While studies at national and regional level already suggested rapid decline of ash populations as a result of ash dieback, a comprehensive survey at European level with harmonized crown assessment data across countries could shed more light into the population decline from a pan-European perspective and could also pave the way for a new conservation strategy beyond national boarders. Here we present data from the ICP Forests Level I crown condition monitoring from 27 countries resulting in > 36,000 observations. We found a substantial increase in defoliation and mortality over time indicating that crown defoliation has almost doubled during the last three decades. Hotspots of mortality are currently situated in southern Scandinavia and north-eastern Europe. Overall survival probability after nearly 30 years of infection has already reached a critical value of 0.51, but with large differences among regions (0.20-0.86). Both a Cox proportional hazard model as well as an Aalen additive regression model strongly suggest that survival of ash is significantly lower in locations with excessive water regime and which experienced more extreme precipitation events during the last two decades. Our results underpin the necessity for fast governmental action and joint rescue efforts beyond national borders since overall mean defoliation will likely reach 50% as early as 2030 as suggested by time series forecasting.


Assuntos
Fraxinus , Animais , Europa Oriental , Florestas , Fraxinus/microbiologia , Doenças das Plantas/microbiologia , Países Escandinavos e Nórdicos
3.
Science ; 373(6562): eabg7484, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554812

RESUMO

Our study suggests that the global CO2 fertilization effect (CFE) on vegetation photosynthesis has declined during the past four decades. The Comments suggest that the temporal inconsistency in AVHRR data and the attribution method undermine the results' robustness. Here, we provide additional evidence that these arguments did not affect our finding and that the global decline in CFE is robust.


Assuntos
Dióxido de Carbono , Fotossíntese , Fertilização
4.
Sci Total Environ ; 784: 147222, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088042

RESUMO

Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.


Assuntos
Quercus , Mudança Climática , Secas , Ecossistema , Europa (Continente) , Florestas , Árvores
5.
Science ; 370(6522): 1295-1300, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303610

RESUMO

The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/metabolismo , Aquecimento Global , Fotossíntese , Atmosfera/química , Dióxido de Carbono/análise
6.
Commun Biol ; 3(1): 125, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170162

RESUMO

The drivers of global change, including increases in atmospheric CO2 concentrations, N and S deposition, and climate change, likely affect the nutritional status of forests. Here we show forest foliar concentrations of N, P, K, S and Mg decreased significantly in Europe by 5%, 11%, 8%, 6% and 7%, respectively during the last three decades. The decrease in nutritional status was especially large in Mediterranean and temperate forests. Increasing atmospheric CO2 concentration was well correlated with the decreases in N, P, K, Mg, S concentrations and the increase of N:P ratio. Regional analyses indicated that increases in some foliar nutrient concentrations such as N, S and Ca in northern Europe occurred associated with increasingly favourable conditions of mean annual precipitation and temperature. Crucial changes in forest health, structure, functioning and services, including negative feedbacks on C capture can be expected if these trends are not reversed.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Florestas , Magnésio/análise , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Enxofre/análise , Árvores/química , Mudança Climática , Secas , Europa (Continente) , Folhas de Planta/química , Solo/química , Temperatura
7.
Trends Ecol Evol ; 35(3): 191-205, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882280

RESUMO

Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models. We also present a roadmap of research priorities to develop a next generation of vegetation models with flexible traits. Including trait variability in vegetation models is necessary to better represent biosphere responses to global change.


Assuntos
Biodiversidade , Plantas , Evolução Biológica , Mudança Climática , Fenótipo , Plantas/genética
8.
Environ Pollut ; 244: 980-994, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30469293

RESUMO

Average nitrogen (N) deposition across Europe has declined since the 1990s. This resulted in decreased N inputs to forest ecosystems especially in Central and Western Europe where deposition levels are highest. While the impact of atmospheric N deposition on forests has been receiving much attention for decades, ecosystem responses to the decline in N inputs received less attention. Here, we review observational studies reporting on trends in a number of indicators: soil acidification and eutrophication, understory vegetation, tree nutrition (foliar element concentrations) as well as tree vitality and growth in response to decreasing N deposition across Europe. Ecosystem responses varied with limited decrease in soil solution nitrate concentrations and potentially also foliar N concentrations. There was no large-scale response in understory vegetation, tree growth, or vitality. Experimental studies support the observation of a more distinct reaction of soil solution and foliar element concentrations to changes in N supply compared to the three other parameters. According to the most likely scenarios, further decrease of N deposition will be limited. We hypothesize that this expected decline will not cause major responses of the parameters analysed in this study. Instead, future changes might be more strongly controlled by the development of N pools accumulated within forest soils, affected by climate change and forest management.


Assuntos
Florestas , Nitratos/análise , Ciclo do Nitrogênio , Nitrogênio/análise , Solo/química , Árvores/química , Mudança Climática , Europa (Continente) , Eutrofização , Estudos Observacionais como Assunto , Árvores/crescimento & desenvolvimento
10.
Front Plant Sci ; 7: 733, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375625

RESUMO

Observed recent and expected future increases in frequency and intensity of climatic extremes in central Europe may pose critical challenges for domestic tree species. Continuous dendrometer recordings provide a valuable source of information on tree stem radius variations, offering the possibility to study a tree's response to environmental influences at a high temporal resolution. In this study, we analyze stem radius variations (SRV) of three domestic tree species (beech, oak, and pine) from 2012 to 2014. We use the novel statistical approach of event coincidence analysis (ECA) to investigate the simultaneous occurrence of extreme daily weather conditions and extreme SRVs, where extremes are defined with respect to the common values at a given phase of the annual growth period. Besides defining extreme events based on individual meteorological variables, we additionally introduce conditional and joint ECA as new multivariate extensions of the original methodology and apply them for testing 105 different combinations of variables regarding their impact on SRV extremes. Our results reveal a strong susceptibility of all three species to the extremes of several meteorological variables. Yet, the inter-species differences regarding their response to the meteorological extremes are comparatively low. The obtained results provide a thorough extension of previous correlation-based studies by emphasizing on the timings of climatic extremes only. We suggest that the employed methodological approach should be further promoted in forest research regarding the investigation of tree responses to changing environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...