Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 732: 139062, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32417553

RESUMO

In Canada's oil sands region, classic boreal hydrology (i.e., winter low flow followed by peaks during spring freshet and then summer flow recession) combined with erosion of both natural and anthropogenically-exposed bitumen results in seasonal and inter-annual variability in stream water chemistry. Using data collected from all seasons over three years (2012-2015), we investigated the mechanisms driving spatial and temporal change in the concentration of 26 water quality parameters for six rivers draining Canada's oil sands region. Mantel tests showed a strong spatial aggregation of climatic drivers (average daily precipitation, accumulated precipitation, snow water equivalent) associated with west versus east discharge patterns. Wavelet analysis highlighted unique watershed attributes, in particular the importance of developed area in lowering responsiveness to seasonal precipitation. Concentrations of most chemical parameters (20 of 23) showed distinct temporal patterns that were correlated with seasonal changes in hydrology which, in turn, were related to changes in weather. Comparison of concentrations observed in this study with those reported in the scientific literature for the same watersheds showed 81% of comparisons differed significantly. This was likely due to the short duration of previous field campaigns and thus the sampling of a very narrow window of the annual streamflow regime.

2.
J Exp Biol ; 213(Pt 13): 2343-53, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20543133

RESUMO

Glutamine synthetase (GSase), the enzyme that catalyses the conversion of glutamate and ammonia to glutamine, is present at high levels in vertebrate brain tissue and is thought to protect the brain from elevated ammonia concentrations. We tested the hypothesis that high brain GSase activity is critical in preventing accumulation of brain ammonia and glutamate during ammonia loading in the ammonia-intolerant rainbow trout. Trout pre-injected with saline or the GSase inhibitor methionine sulfoximine (MSOX, 6 mg kg(-1)), were exposed to 0, 670 or 1000 micromol l(-1) NH(4)Cl in the water for 24 and 96 h. Brain ammonia levels were 3- to 6-fold higher in ammonia-exposed fish relative to control fish and MSOX treatment did not alter this. Brain GSase activity was unaffected by ammonia exposure, while MSOX inhibited GSase activity by approximately 75%. Brain glutamate levels were lower and glutamine levels were higher in fish exposed to ammonia relative to controls. While MSOX treatment had little impact on brain glutamate, glutamine levels were significantly reduced by 96 h. With ammonia treatment, significant changes in the concentration of multiple other brain amino acids occurred and these changes were mostly reversed or eliminated with MSOX. Overall the changes in amino acid levels suggest that multiple enzymatic pathways can supply glutamate for the production of glutamine via GSase during ammonia exposure and that alternative transaminase pathways can be recruited for ammonia detoxification. Plasma cortisol levels increased 7- to 15-fold at 24 h in response to ammonia and MSOX did not exacerbate this stress response. These findings indicate that rainbow trout possess a relatively large reserve capacity for ammonia detoxification and for preventing glutamate accumulation during hyperammonaemic conditions.


Assuntos
Amônia/efeitos adversos , Glutamato-Amônia Ligase/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamina/metabolismo , Metionina Sulfoximina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...