Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Physiol Perform ; 18(10): 1196-1205, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536677

RESUMO

PURPOSE: Short-track speed skating race distances of 500, 1000, and 1500 m that last ∼40 seconds to ∼2.5 minutes and require a maximal intensity at speeds beyond maximal oxygen uptake (VO2max). Recently, the anaerobic speed reserve (ASR) has been applied by scientists and coaches in middle-distance sports to deepen understanding of 1- to 5-minute event performance where different physiological profiles (speed, hybrid, and endurance) can have success. METHODS: World-class (women, n = 2; men, n = 3) and international-level (women, n = 4; men, n = 5) short-track speed skaters completed maximal aerobic speed and maximal skating speed tests. ASR characteristics were compared between profiles and associated with on-ice performance. RESULTS: World-class athletes raced at a lower %ASR in the 1000- (3.1%; large; almost certainly) and 1500-m (1.8%; large; possibly) events than international athletes. Men's and women's speed profiles operated at a higher %ASR in the 500-m than hybrid and endurance profiles, whereas in the 1500-m, endurance profiles worked at a substantially lower %ASR than hybrid and speed profiles. Women's 500-m performance is very largely associated with maximal skating speed, while women's maximal aerobic speed appears to be a key determining factor in the 1000- and 1500-m performance. CONCLUSION: World-class short-track speed skaters can be developed in speed, hybrid, and endurance profiles but achieve their performance differently by leveraging their strongest characteristics. These results show nuanced differences between men's and women's 500-, 1000- and 1500-m event performance across ASR profile that unlock new insights for individualizing athlete performance in these disciplines.


Assuntos
Desempenho Atlético , Patinação , Masculino , Humanos , Feminino , Patinação/fisiologia , Anaerobiose , Desempenho Atlético/fisiologia , Atletas
2.
Sports Med ; 51(10): 2017-2028, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34398445

RESUMO

Many individual and team sport events require extended periods of exercise above the speed or power associated with maximal oxygen uptake (i.e., maximal aerobic speed/power, MAS/MAP). In the absence of valid and reliable measures of anaerobic metabolism, the anaerobic speed/power reserve (ASR/APR) concept, defined as the difference between an athlete's MAS/MAP and their maximal sprinting speed (MSS)/peak power (MPP), advances our understanding of athlete tolerance to high speed/power efforts in this range. When exercising at speeds above MAS/MAP, what likely matters most, irrespective of athlete profile or locomotor mode, is the proportion of the ASR/APR used, rather than the more commonly used reference to percent MAS/MAP. The locomotor construct of ASR/APR offers numerous underexplored opportunities. In particular, how differences in underlying athlete profiles (e.g., fiber typology) impact the training response for different 'speed', 'endurance' or 'hybrid' profiles is now emerging. Such an individualized approach to athlete training may be necessary to avoid 'maladaptive' or 'non-responses'. As a starting point for coaches and practitioners, we recommend upfront locomotor profiling to guide training content at both the macro (understanding athlete profile variability and training model selection, e.g., annual periodization) and micro levels (weekly daily planning of individual workouts, e.g., short vs long intervals vs repeated sprint training and recovery time between workouts). More specifically, we argue that high-intensity interval training formats should be tailored to the locomotor profile accordingly. New focus and appreciation for the ASR/APR is required to individualize training appropriately so as to maximize athlete preparation for elite competition.


Assuntos
Desempenho Atlético , Treinamento Intervalado de Alta Intensidade , Corrida , Anaerobiose , Atletas , Humanos
5.
Int J Sports Physiol Perform ; 14(8): 1147-1150, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702359

RESUMO

PURPOSE: Anaerobic speed reserve (ASR), defined as the speed range from velocity associated with maximal oxygen uptake (vVO2max) to maximal sprint speed, has recently been shown to be an important tool for middle-distance coaches to meet event surge demands and inform on the complexity of athlete profiles. To enable field application of ASR, the relationship between gun-to-tape 1500-m average speed (1500v) and the vVO2max for the determination of lower landmark of the ASR was assessed in elite middle-distance runners. METHODS: A total of 8 national and 4 international middle-distance runners completed a laboratory-measured vVO2max assessment within 6 wk of a nonchampionship 1500-m gun-to-tape race. ASR was calculated using both laboratory-derived vVO2max (ASR-LAB) and 1500v (ASR-1500v), with maximal sprint speed measured using radar technology. RESULTS: 1500v was on average +2.06 ± 1.03 km/h faster than vVO2max (moderate effect, very likely). ASR-LAB and ASR-1500v mean differences were -2.1 ± 1.5 km/h (large effect, very likely). 1500v showed an extremely large relationship with vVO2max, r = .90 ± .12 (most likely). Using this relationship, a linear-regression vVO2max-estimation equation was derived as vVO2max (km/h) = (1500v [km/h] - 14.921)/0.4266. CONCLUSIONS: A moderate difference was evident between 1500v and vVO2max in elite middle-distance runners. The present regression equation should be applied for an accurate field prediction of vVO2max from 1500-m gun-to-tape races. These findings have strong practical implications for coaches lacking access to a sports physiology laboratory who seek to monitor and profile middle-distance runners.


Assuntos
Desempenho Atlético/fisiologia , Consumo de Oxigênio , Corrida/fisiologia , Anaerobiose , Atletas , Teste de Esforço , Humanos , Valor Preditivo dos Testes
6.
Artigo em Inglês | MEDLINE | ID: mdl-33344952

RESUMO

Middle-distance running provides unique complexity where very different physiological and structural/mechanical profiles may achieve similar elite performances. Training and improving the key determinants of performance and applying interventions to athletes within the middle-distance event group are probably much more divergent than many practitioners and researchers appreciate. The addition of maximal sprint speed and other anaerobic and biomechanical based parameters, alongside more commonly captured aerobic characteristics, shows promise to enhance our understanding and analysis within the complexities of middle-distance sport science. For coaches, athlete diversity presents daily training programming challenges in order to best individualize a given stimulus according to the athletes profile and avoid "non-responder" outcomes. It is from this decision making part of the coaching process, that we target this mini-review. First we ask researchers to "question their categories" concerning middle-distance event groupings. Historically broad classifications have been used [from 800 m (~1.5 min) all the way to 5,000 m (~13-15 min)]. Here within we show compelling rationale from physiological and event demand perspectives for narrowing middle-distance to 800 and 1,500 m alone (1.5-5 min duration), considering the diversity of bioenergetics and mechanical constraints within these events. Additionally, we provide elite athlete data showing the large diversity of 800 and 1,500 m athlete profiles, a critical element that is often overlooked in middle-distance research design. Finally, we offer practical recommendations on how researchers, practitioners, and coaches can advance training study designs, scientific interventions, and analysis on middle-distance athletes/participants to provide information for individualized decision making trackside and more favorable and informative study outcomes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33344966

RESUMO

Background: 1,500 m running has long been a blue ribbon event of track championship racing. The eventual medalists employ common tactical behaviors such as a fast sustained pace from the start (gun-to-tape), or, slow initial laps that precede a precisely timed race kick. Before the kick, there are positional changes caused by surging, that can go uncharacterized. The inter-relationship of surge events, tactical positioning, and kick execution may have important implications for eventual medal winning outcomes and require further definition. Methods: In a randomized order, three middle-distance running experts were provided publically available video (YouTube) of 16 men's 1,500 m championship races across, European, World and Olympic championships. Each expert determined the occurrence of surges (defined as any point in the 1,500 m after the first 300 m where an athlete repositions by ≥3 places; or noticeably dictates a raise in the pace from the front) and the race kick. Following a second level verification of expert observations, tactical behaviors (quantity and distance marker within each race) mean distance from the finish were compared between fast (≤3:34.00, n = 5), medium (>3:34.00- ≤3:41.99, n = 7) and slow (≥3:42.00, n = 4) race categories. Results: Before the race kick, there were more surges in slow (5 ± 1.7, mean ±90% confidence limits) vs. fast races (1 ± 0.4, very large difference, very likely). The final surge before the race kick occurred earlier in fast (704 ± 133 m from the finish) vs. medium (427 ± 83 m, large difference, most likely), and slow races (370 ± 137 m, large difference, most likely). At initiation of the race kick in fast races, large positional differences were found between eventual gold (2 ± 1.2; likely) and silver (2.2 ± 1.6; likely) vs. bronze medalists (4.4 ± 1.2). In slow races, positional differences were unclear between eventual gold (4.3 ± 4.7), silver (4.8 ± 4.8) and bronze medalists (5.3 ± 1.5). Regardless of category, the race kick occurred on the last lap, with unclear differences between fast 244 ± 92 m medium 243 ± 56 m and slow 236 ± 142 m races. Conclusions: Presenting tactical behaviors by race categorization (slow, medium, fast race times), provides a novel understanding of the nuance of racing tactics. The present findings highlight the importance of considering within race athlete decision making across multiple-race scenarios during championship preparation.

8.
Int J Sports Physiol Perform ; 14(4): 501-508, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300023

RESUMO

PURPOSE: In recent years (2011-2016), men's 800-m championship running performances have required greater speed than previous eras (2000-2009). The "anaerobic speed reserve" (ASR) may be a key differentiator of this performance, but profiles of elite 800-m runners and their relationship to performance time have yet to be determined. METHODS: The ASR-determined as the difference between maximal sprint speed (MSS) and predicted maximal aerobic speed (MAS)-of 19 elite 800- and 1500-m runners was assessed using 50-m sprint and 1500-m race performance times. Profiles of 3 athlete subgroups were examined using cluster analysis and the speed reserve ratio (SRR), defined as MSS/MAS. RESULTS: For the same MAS, MSS and ASR showed very large negative (both r = -.74 ± .30, ±90% confidence limits; very likely) relationships with 800-m performance time. In contrast, for the same MSS, ASR and MAS had small negative relationships (both r = -.16 ± .54; possibly) with 800-m performance. ASR, 800-m personal best, and SRR best defined the 3 subgroups along a continuum of 800-m runners, with SRR values as follows: 400-800 m ≥ 1.58, 800 m ≤ 1.57 to ≥ 1.48, and 800-1500 m ≤ 1.47 to ≥ 1.36. CONCLUSION: MSS had the strongest relationship with 800-m performance, whereby for the same MSS, MAS and ASR showed only small relationships to differences in 800-m time. Furthermore, the findings support the coaching observation of three 800-m subgroups, with the SRR potentially representing a useful and practical tool for identifying an athlete's 800-m profile. Future investigations should consider the SRR framework and its application for individualized training approaches in this event.


Assuntos
Desempenho Atlético/fisiologia , Comportamento Competitivo/fisiologia , Consumo de Oxigênio , Corrida/fisiologia , Humanos , Masculino
9.
Sports Med ; 49(6): 843-852, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30374943

RESUMO

Recent evidence indicates that the modern-day men's 800 m runner requires a speed capability beyond that of previous eras. In addition, the appreciation of different athlete subgroups (400-800, 800, 800-1500 m) implies a complex interplay between the mechanical (aerial or terrestrial) and physiological characteristics that enable success in any individual runner. Historically, coach education for middle-distance running often emphasises aerobic metabolic conditioning, while it relatively lacks consideration for an important neuromuscular and mechanical component. Consequently, many 800 m runners today may lack the mechanical competence needed to achieve the relaxed race pace speed required for success, resulting in limited ability to cope with surges, run faster first laps or close fast. Mechanical competence may refer to the skilled coordination of neuromuscular/mechanical (stride length/frequency/impulse) and metabolic components needed to sustain middle-distance race pace and adjust to surges efficiently. The anaerobic speed reserve (ASR) construct (difference between an athlete's velocity at maximal oxygen uptake [v[Formula: see text]O2max]-the first speed at which maximal oxygen uptake [[Formula: see text]O2max] is attained) and their maximal sprint speed (MSS) offers a framework to assess a runner's speed range relative to modern-day race demands. While the smooth and relaxed technique observed in middle-distance runners is often considered causal to running economy measured during submaximal running, little empirical evidence supports such an assumption. Thus, a multidisciplinary approach is needed to examine the underpinning factors enabling elite 800 m running race pace efficiency. Here, we argue for the importance of utilising the ASR and MSS measurement to ensure middle-distance runners have the skills to compete in the race-defining surges of modern-day 800 m running.


Assuntos
Desempenho Atlético/fisiologia , Corrida/fisiologia , Anaerobiose , Atletas , Desempenho Atlético/tendências , Humanos , Masculino , Consumo de Oxigênio , Corrida/tendências
12.
Int J Sports Physiol Perform ; 13(2): 246-249, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28488905

RESUMO

PURPOSE: To assess the longitudinal evolution of tactical behaviors used to medal in men's 800-m Olympic Games (OG) or world-championship (WC) events in the recent competition era (2000-2016). METHODS: Thirteen OG and WC events were characterized for 1st- and 2nd-lap splits using available footage from YouTube. Positive pacing strategies were defined as a faster 1st lap. Season's best 800-m time and world ranking, reflective of an athlete's "peak condition," were obtained to determine relationships between adopted tactics and physical condition prior to the championships. Seven championship events provided coverage of all medalists to enable determination of average 100-m speed and sector pacing of medalists. RESULTS: From 2011 onward, 800-m OG and WC medalists showed a faster 1st lap by 2.2 ± 1.1 s (mean, ±90% confidence limits; large difference, very likely), contrasting a possibly faster 2nd lap from 2000 to 2009 (0.5, ±0.4 s; moderate difference). A positive pacing strategy was related to a higher world ranking prior to the championships (r = .94, .84-.98; extremely large, most likely). After 2011, the fastest 100-m sector from 800-m OG and WC medalists was faster than before 2009 by 0.5, ±0.2 m/s (large difference, most likely). CONCLUSIONS: A secular change in tactical racing behavior appears evident in 800-m championships; since 2011, medalists have largely run faster 1st laps and have faster 100-m sector-speed requirements. This finding may be pertinent for training, tactical preparation, and talent identification of athletes preparing for 800-m running at OGs and WCs.


Assuntos
Desempenho Atlético/fisiologia , Comportamento Competitivo/fisiologia , Corrida/fisiologia , Desempenho Atlético/psicologia , Tomada de Decisões/fisiologia , Humanos , Masculino , Condicionamento Físico Humano , Corrida/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...